Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS2 Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms

A novel and efficient 3D biohybrid photocatalyst, defective MoS2 nanosheets encapsulated carbonized rape pollen, was fabricated and applied to water disinfection. The rape pollen-MoS2 (PM) biohybrid showed excellent dispersibility, high stability, and efficient charge-carrier separation and migratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2020-01, Vol.54 (1), p.537-549
Hauptverfasser: Xiao, Kemeng, Wang, Tianqi, Sun, Mingzhe, Hanif, Aamir, Gu, Qinfen, Tian, Bingbing, Jiang, Zhifeng, Wang, Bo, Sun, Hongli, Shang, Jin, Wong, Po Keung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 549
container_issue 1
container_start_page 537
container_title Environmental science & technology
container_volume 54
creator Xiao, Kemeng
Wang, Tianqi
Sun, Mingzhe
Hanif, Aamir
Gu, Qinfen
Tian, Bingbing
Jiang, Zhifeng
Wang, Bo
Sun, Hongli
Shang, Jin
Wong, Po Keung
description A novel and efficient 3D biohybrid photocatalyst, defective MoS2 nanosheets encapsulated carbonized rape pollen, was fabricated and applied to water disinfection. The rape pollen-MoS2 (PM) biohybrid showed excellent dispersibility, high stability, and efficient charge-carrier separation and migration ability, resulting in the highly enhanced photocatalytic inactivation performance toward various waterborne bacteria under different light sources. The inactivation mechanisms were systematically investigated. Reactive species (RSs), including electrons, holes, and reactive oxygen species (•O2 – and •OH), played major roles in inactivating bacteria. The antioxidant system of bacteria exhibited a self-protection capacity by eliminating the photogenerated RSs from PM biohybrid at the early stage of inactivation. With the accumulation of RSs, the cell membrane and membrane-associated functions were destroyed, as suggested by the collapse of cell envelope and subsequent loss of cell respiration and ATP synthesis capacity. The microscopic images further confirmed the destruction of the bacterial membrane. After losing the membrane barrier, the oxidation of cytoplasmic proteins and lipids caused by invaded RSs occurred readily. Finally, the leakage of DNA and RNA announced the irreversible death of bacteria. These results indicated that the bacterial inactivation began with the membrane rupture, followed by the oxidation and leakage of intracellular substances. This work not only provided a new insight into the combination of semiconductors with earth-abundant biomaterials for fabricating high-performance photocatalysts, but also revealed the underlying mechanisms of photocatalytic bacterial inactivation in depth.
doi_str_mv 10.1021/acs.est.9b05627
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_journals_2337144953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2337144953</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-8d970af8c462a27deb7e5373f7fbfca00a0a30e7839fda9aa0cc40a3b549d5e83</originalsourceid><addsrcrecordid>eNpVkMFLwzAUh4MoOKdnrwGP0vmSNEvrzY2pgw2HU_A2XtPEddRmNpnQi3-7rRuIp_f48Xvfg4-QSwYDBpzdoPYD48MgzUAOuToiPSY5RDKR7Jj0AJiIUjF8OyVn3m8AgAtIeuR7sXbBaQxYNqHQdIQ6mLrAkk6rdi2-MBSuollDkT7j1tCFK0tTRXO35HRUuHWT1UVOx78AH27psqlM_W461sRao4OnWOX_aXOj11gV_sOfkxOLpTcXh9knr_eTl_FjNHt6mI7vZhEKKUOU5KkCtImOhxy5yk2mjBRKWGUzqxEAAQUYlYjU5pgigtZxG2UyTnNpEtEnV3vutnafu1bTauN2ddW-XHEhFIvjVIq2db1vtS7_CgxWneBVF3aXB8HiB_hmcig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2337144953</pqid></control><display><type>article</type><title>Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS2 Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms</title><source>ACS Publications</source><creator>Xiao, Kemeng ; Wang, Tianqi ; Sun, Mingzhe ; Hanif, Aamir ; Gu, Qinfen ; Tian, Bingbing ; Jiang, Zhifeng ; Wang, Bo ; Sun, Hongli ; Shang, Jin ; Wong, Po Keung</creator><creatorcontrib>Xiao, Kemeng ; Wang, Tianqi ; Sun, Mingzhe ; Hanif, Aamir ; Gu, Qinfen ; Tian, Bingbing ; Jiang, Zhifeng ; Wang, Bo ; Sun, Hongli ; Shang, Jin ; Wong, Po Keung</creatorcontrib><description>A novel and efficient 3D biohybrid photocatalyst, defective MoS2 nanosheets encapsulated carbonized rape pollen, was fabricated and applied to water disinfection. The rape pollen-MoS2 (PM) biohybrid showed excellent dispersibility, high stability, and efficient charge-carrier separation and migration ability, resulting in the highly enhanced photocatalytic inactivation performance toward various waterborne bacteria under different light sources. The inactivation mechanisms were systematically investigated. Reactive species (RSs), including electrons, holes, and reactive oxygen species (•O2 – and •OH), played major roles in inactivating bacteria. The antioxidant system of bacteria exhibited a self-protection capacity by eliminating the photogenerated RSs from PM biohybrid at the early stage of inactivation. With the accumulation of RSs, the cell membrane and membrane-associated functions were destroyed, as suggested by the collapse of cell envelope and subsequent loss of cell respiration and ATP synthesis capacity. The microscopic images further confirmed the destruction of the bacterial membrane. After losing the membrane barrier, the oxidation of cytoplasmic proteins and lipids caused by invaded RSs occurred readily. Finally, the leakage of DNA and RNA announced the irreversible death of bacteria. These results indicated that the bacterial inactivation began with the membrane rupture, followed by the oxidation and leakage of intracellular substances. This work not only provided a new insight into the combination of semiconductors with earth-abundant biomaterials for fabricating high-performance photocatalysts, but also revealed the underlying mechanisms of photocatalytic bacterial inactivation in depth.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b05627</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Antioxidants ; Bacteria ; Biomaterials ; Biomedical materials ; Catalysts ; Cell membranes ; Collapse ; Current carriers ; Deactivation ; Deoxyribonucleic acid ; Disinfection ; DNA ; Electronics industry ; Inactivation ; Leakage ; Light sources ; Lipids ; Molybdenum disulfide ; New combinations ; Oxidation ; Photocatalysis ; Photocatalysts ; Pollen ; Rape ; Reactive oxygen species ; Ribonucleic acid ; RNA ; Water treatment</subject><ispartof>Environmental science &amp; technology, 2020-01, Vol.54 (1), p.537-549</ispartof><rights>Copyright American Chemical Society Jan 7, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6589-6122 ; 0000-0003-1508-6217 ; 0000-0002-2454-8156 ; 0000-0001-9209-4208 ; 0000-0001-5165-0466 ; 0000-0003-3081-960X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.9b05627$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.9b05627$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Xiao, Kemeng</creatorcontrib><creatorcontrib>Wang, Tianqi</creatorcontrib><creatorcontrib>Sun, Mingzhe</creatorcontrib><creatorcontrib>Hanif, Aamir</creatorcontrib><creatorcontrib>Gu, Qinfen</creatorcontrib><creatorcontrib>Tian, Bingbing</creatorcontrib><creatorcontrib>Jiang, Zhifeng</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Sun, Hongli</creatorcontrib><creatorcontrib>Shang, Jin</creatorcontrib><creatorcontrib>Wong, Po Keung</creatorcontrib><title>Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS2 Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>A novel and efficient 3D biohybrid photocatalyst, defective MoS2 nanosheets encapsulated carbonized rape pollen, was fabricated and applied to water disinfection. The rape pollen-MoS2 (PM) biohybrid showed excellent dispersibility, high stability, and efficient charge-carrier separation and migration ability, resulting in the highly enhanced photocatalytic inactivation performance toward various waterborne bacteria under different light sources. The inactivation mechanisms were systematically investigated. Reactive species (RSs), including electrons, holes, and reactive oxygen species (•O2 – and •OH), played major roles in inactivating bacteria. The antioxidant system of bacteria exhibited a self-protection capacity by eliminating the photogenerated RSs from PM biohybrid at the early stage of inactivation. With the accumulation of RSs, the cell membrane and membrane-associated functions were destroyed, as suggested by the collapse of cell envelope and subsequent loss of cell respiration and ATP synthesis capacity. The microscopic images further confirmed the destruction of the bacterial membrane. After losing the membrane barrier, the oxidation of cytoplasmic proteins and lipids caused by invaded RSs occurred readily. Finally, the leakage of DNA and RNA announced the irreversible death of bacteria. These results indicated that the bacterial inactivation began with the membrane rupture, followed by the oxidation and leakage of intracellular substances. This work not only provided a new insight into the combination of semiconductors with earth-abundant biomaterials for fabricating high-performance photocatalysts, but also revealed the underlying mechanisms of photocatalytic bacterial inactivation in depth.</description><subject>Antioxidants</subject><subject>Bacteria</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Catalysts</subject><subject>Cell membranes</subject><subject>Collapse</subject><subject>Current carriers</subject><subject>Deactivation</subject><subject>Deoxyribonucleic acid</subject><subject>Disinfection</subject><subject>DNA</subject><subject>Electronics industry</subject><subject>Inactivation</subject><subject>Leakage</subject><subject>Light sources</subject><subject>Lipids</subject><subject>Molybdenum disulfide</subject><subject>New combinations</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Pollen</subject><subject>Rape</subject><subject>Reactive oxygen species</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Water treatment</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkMFLwzAUh4MoOKdnrwGP0vmSNEvrzY2pgw2HU_A2XtPEddRmNpnQi3-7rRuIp_f48Xvfg4-QSwYDBpzdoPYD48MgzUAOuToiPSY5RDKR7Jj0AJiIUjF8OyVn3m8AgAtIeuR7sXbBaQxYNqHQdIQ6mLrAkk6rdi2-MBSuollDkT7j1tCFK0tTRXO35HRUuHWT1UVOx78AH27psqlM_W461sRao4OnWOX_aXOj11gV_sOfkxOLpTcXh9knr_eTl_FjNHt6mI7vZhEKKUOU5KkCtImOhxy5yk2mjBRKWGUzqxEAAQUYlYjU5pgigtZxG2UyTnNpEtEnV3vutnafu1bTauN2ddW-XHEhFIvjVIq2db1vtS7_CgxWneBVF3aXB8HiB_hmcig</recordid><startdate>20200107</startdate><enddate>20200107</enddate><creator>Xiao, Kemeng</creator><creator>Wang, Tianqi</creator><creator>Sun, Mingzhe</creator><creator>Hanif, Aamir</creator><creator>Gu, Qinfen</creator><creator>Tian, Bingbing</creator><creator>Jiang, Zhifeng</creator><creator>Wang, Bo</creator><creator>Sun, Hongli</creator><creator>Shang, Jin</creator><creator>Wong, Po Keung</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6589-6122</orcidid><orcidid>https://orcid.org/0000-0003-1508-6217</orcidid><orcidid>https://orcid.org/0000-0002-2454-8156</orcidid><orcidid>https://orcid.org/0000-0001-9209-4208</orcidid><orcidid>https://orcid.org/0000-0001-5165-0466</orcidid><orcidid>https://orcid.org/0000-0003-3081-960X</orcidid></search><sort><creationdate>20200107</creationdate><title>Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS2 Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms</title><author>Xiao, Kemeng ; Wang, Tianqi ; Sun, Mingzhe ; Hanif, Aamir ; Gu, Qinfen ; Tian, Bingbing ; Jiang, Zhifeng ; Wang, Bo ; Sun, Hongli ; Shang, Jin ; Wong, Po Keung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-8d970af8c462a27deb7e5373f7fbfca00a0a30e7839fda9aa0cc40a3b549d5e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antioxidants</topic><topic>Bacteria</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Catalysts</topic><topic>Cell membranes</topic><topic>Collapse</topic><topic>Current carriers</topic><topic>Deactivation</topic><topic>Deoxyribonucleic acid</topic><topic>Disinfection</topic><topic>DNA</topic><topic>Electronics industry</topic><topic>Inactivation</topic><topic>Leakage</topic><topic>Light sources</topic><topic>Lipids</topic><topic>Molybdenum disulfide</topic><topic>New combinations</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Pollen</topic><topic>Rape</topic><topic>Reactive oxygen species</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Kemeng</creatorcontrib><creatorcontrib>Wang, Tianqi</creatorcontrib><creatorcontrib>Sun, Mingzhe</creatorcontrib><creatorcontrib>Hanif, Aamir</creatorcontrib><creatorcontrib>Gu, Qinfen</creatorcontrib><creatorcontrib>Tian, Bingbing</creatorcontrib><creatorcontrib>Jiang, Zhifeng</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Sun, Hongli</creatorcontrib><creatorcontrib>Shang, Jin</creatorcontrib><creatorcontrib>Wong, Po Keung</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Kemeng</au><au>Wang, Tianqi</au><au>Sun, Mingzhe</au><au>Hanif, Aamir</au><au>Gu, Qinfen</au><au>Tian, Bingbing</au><au>Jiang, Zhifeng</au><au>Wang, Bo</au><au>Sun, Hongli</au><au>Shang, Jin</au><au>Wong, Po Keung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS2 Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-01-07</date><risdate>2020</risdate><volume>54</volume><issue>1</issue><spage>537</spage><epage>549</epage><pages>537-549</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>A novel and efficient 3D biohybrid photocatalyst, defective MoS2 nanosheets encapsulated carbonized rape pollen, was fabricated and applied to water disinfection. The rape pollen-MoS2 (PM) biohybrid showed excellent dispersibility, high stability, and efficient charge-carrier separation and migration ability, resulting in the highly enhanced photocatalytic inactivation performance toward various waterborne bacteria under different light sources. The inactivation mechanisms were systematically investigated. Reactive species (RSs), including electrons, holes, and reactive oxygen species (•O2 – and •OH), played major roles in inactivating bacteria. The antioxidant system of bacteria exhibited a self-protection capacity by eliminating the photogenerated RSs from PM biohybrid at the early stage of inactivation. With the accumulation of RSs, the cell membrane and membrane-associated functions were destroyed, as suggested by the collapse of cell envelope and subsequent loss of cell respiration and ATP synthesis capacity. The microscopic images further confirmed the destruction of the bacterial membrane. After losing the membrane barrier, the oxidation of cytoplasmic proteins and lipids caused by invaded RSs occurred readily. Finally, the leakage of DNA and RNA announced the irreversible death of bacteria. These results indicated that the bacterial inactivation began with the membrane rupture, followed by the oxidation and leakage of intracellular substances. This work not only provided a new insight into the combination of semiconductors with earth-abundant biomaterials for fabricating high-performance photocatalysts, but also revealed the underlying mechanisms of photocatalytic bacterial inactivation in depth.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.9b05627</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6589-6122</orcidid><orcidid>https://orcid.org/0000-0003-1508-6217</orcidid><orcidid>https://orcid.org/0000-0002-2454-8156</orcidid><orcidid>https://orcid.org/0000-0001-9209-4208</orcidid><orcidid>https://orcid.org/0000-0001-5165-0466</orcidid><orcidid>https://orcid.org/0000-0003-3081-960X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2020-01, Vol.54 (1), p.537-549
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_journals_2337144953
source ACS Publications
subjects Antioxidants
Bacteria
Biomaterials
Biomedical materials
Catalysts
Cell membranes
Collapse
Current carriers
Deactivation
Deoxyribonucleic acid
Disinfection
DNA
Electronics industry
Inactivation
Leakage
Light sources
Lipids
Molybdenum disulfide
New combinations
Oxidation
Photocatalysis
Photocatalysts
Pollen
Rape
Reactive oxygen species
Ribonucleic acid
RNA
Water treatment
title Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS2 Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photocatalytic%20Bacterial%20Inactivation%20by%20a%20Rape%20Pollen-MoS2%20Biohybrid%20Catalyst:%20Synergetic%20Effects%20and%20Inactivation%20Mechanisms&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Xiao,%20Kemeng&rft.date=2020-01-07&rft.volume=54&rft.issue=1&rft.spage=537&rft.epage=549&rft.pages=537-549&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b05627&rft_dat=%3Cproquest_acs_j%3E2337144953%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2337144953&rft_id=info:pmid/&rfr_iscdi=true