Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS2 Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms
A novel and efficient 3D biohybrid photocatalyst, defective MoS2 nanosheets encapsulated carbonized rape pollen, was fabricated and applied to water disinfection. The rape pollen-MoS2 (PM) biohybrid showed excellent dispersibility, high stability, and efficient charge-carrier separation and migratio...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2020-01, Vol.54 (1), p.537-549 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 549 |
---|---|
container_issue | 1 |
container_start_page | 537 |
container_title | Environmental science & technology |
container_volume | 54 |
creator | Xiao, Kemeng Wang, Tianqi Sun, Mingzhe Hanif, Aamir Gu, Qinfen Tian, Bingbing Jiang, Zhifeng Wang, Bo Sun, Hongli Shang, Jin Wong, Po Keung |
description | A novel and efficient 3D biohybrid photocatalyst, defective MoS2 nanosheets encapsulated carbonized rape pollen, was fabricated and applied to water disinfection. The rape pollen-MoS2 (PM) biohybrid showed excellent dispersibility, high stability, and efficient charge-carrier separation and migration ability, resulting in the highly enhanced photocatalytic inactivation performance toward various waterborne bacteria under different light sources. The inactivation mechanisms were systematically investigated. Reactive species (RSs), including electrons, holes, and reactive oxygen species (•O2 – and •OH), played major roles in inactivating bacteria. The antioxidant system of bacteria exhibited a self-protection capacity by eliminating the photogenerated RSs from PM biohybrid at the early stage of inactivation. With the accumulation of RSs, the cell membrane and membrane-associated functions were destroyed, as suggested by the collapse of cell envelope and subsequent loss of cell respiration and ATP synthesis capacity. The microscopic images further confirmed the destruction of the bacterial membrane. After losing the membrane barrier, the oxidation of cytoplasmic proteins and lipids caused by invaded RSs occurred readily. Finally, the leakage of DNA and RNA announced the irreversible death of bacteria. These results indicated that the bacterial inactivation began with the membrane rupture, followed by the oxidation and leakage of intracellular substances. This work not only provided a new insight into the combination of semiconductors with earth-abundant biomaterials for fabricating high-performance photocatalysts, but also revealed the underlying mechanisms of photocatalytic bacterial inactivation in depth. |
doi_str_mv | 10.1021/acs.est.9b05627 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_journals_2337144953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2337144953</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-8d970af8c462a27deb7e5373f7fbfca00a0a30e7839fda9aa0cc40a3b549d5e83</originalsourceid><addsrcrecordid>eNpVkMFLwzAUh4MoOKdnrwGP0vmSNEvrzY2pgw2HU_A2XtPEddRmNpnQi3-7rRuIp_f48Xvfg4-QSwYDBpzdoPYD48MgzUAOuToiPSY5RDKR7Jj0AJiIUjF8OyVn3m8AgAtIeuR7sXbBaQxYNqHQdIQ6mLrAkk6rdi2-MBSuollDkT7j1tCFK0tTRXO35HRUuHWT1UVOx78AH27psqlM_W461sRao4OnWOX_aXOj11gV_sOfkxOLpTcXh9knr_eTl_FjNHt6mI7vZhEKKUOU5KkCtImOhxy5yk2mjBRKWGUzqxEAAQUYlYjU5pgigtZxG2UyTnNpEtEnV3vutnafu1bTauN2ddW-XHEhFIvjVIq2db1vtS7_CgxWneBVF3aXB8HiB_hmcig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2337144953</pqid></control><display><type>article</type><title>Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS2 Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms</title><source>ACS Publications</source><creator>Xiao, Kemeng ; Wang, Tianqi ; Sun, Mingzhe ; Hanif, Aamir ; Gu, Qinfen ; Tian, Bingbing ; Jiang, Zhifeng ; Wang, Bo ; Sun, Hongli ; Shang, Jin ; Wong, Po Keung</creator><creatorcontrib>Xiao, Kemeng ; Wang, Tianqi ; Sun, Mingzhe ; Hanif, Aamir ; Gu, Qinfen ; Tian, Bingbing ; Jiang, Zhifeng ; Wang, Bo ; Sun, Hongli ; Shang, Jin ; Wong, Po Keung</creatorcontrib><description>A novel and efficient 3D biohybrid photocatalyst, defective MoS2 nanosheets encapsulated carbonized rape pollen, was fabricated and applied to water disinfection. The rape pollen-MoS2 (PM) biohybrid showed excellent dispersibility, high stability, and efficient charge-carrier separation and migration ability, resulting in the highly enhanced photocatalytic inactivation performance toward various waterborne bacteria under different light sources. The inactivation mechanisms were systematically investigated. Reactive species (RSs), including electrons, holes, and reactive oxygen species (•O2 – and •OH), played major roles in inactivating bacteria. The antioxidant system of bacteria exhibited a self-protection capacity by eliminating the photogenerated RSs from PM biohybrid at the early stage of inactivation. With the accumulation of RSs, the cell membrane and membrane-associated functions were destroyed, as suggested by the collapse of cell envelope and subsequent loss of cell respiration and ATP synthesis capacity. The microscopic images further confirmed the destruction of the bacterial membrane. After losing the membrane barrier, the oxidation of cytoplasmic proteins and lipids caused by invaded RSs occurred readily. Finally, the leakage of DNA and RNA announced the irreversible death of bacteria. These results indicated that the bacterial inactivation began with the membrane rupture, followed by the oxidation and leakage of intracellular substances. This work not only provided a new insight into the combination of semiconductors with earth-abundant biomaterials for fabricating high-performance photocatalysts, but also revealed the underlying mechanisms of photocatalytic bacterial inactivation in depth.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b05627</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Antioxidants ; Bacteria ; Biomaterials ; Biomedical materials ; Catalysts ; Cell membranes ; Collapse ; Current carriers ; Deactivation ; Deoxyribonucleic acid ; Disinfection ; DNA ; Electronics industry ; Inactivation ; Leakage ; Light sources ; Lipids ; Molybdenum disulfide ; New combinations ; Oxidation ; Photocatalysis ; Photocatalysts ; Pollen ; Rape ; Reactive oxygen species ; Ribonucleic acid ; RNA ; Water treatment</subject><ispartof>Environmental science & technology, 2020-01, Vol.54 (1), p.537-549</ispartof><rights>Copyright American Chemical Society Jan 7, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6589-6122 ; 0000-0003-1508-6217 ; 0000-0002-2454-8156 ; 0000-0001-9209-4208 ; 0000-0001-5165-0466 ; 0000-0003-3081-960X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.9b05627$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.9b05627$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Xiao, Kemeng</creatorcontrib><creatorcontrib>Wang, Tianqi</creatorcontrib><creatorcontrib>Sun, Mingzhe</creatorcontrib><creatorcontrib>Hanif, Aamir</creatorcontrib><creatorcontrib>Gu, Qinfen</creatorcontrib><creatorcontrib>Tian, Bingbing</creatorcontrib><creatorcontrib>Jiang, Zhifeng</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Sun, Hongli</creatorcontrib><creatorcontrib>Shang, Jin</creatorcontrib><creatorcontrib>Wong, Po Keung</creatorcontrib><title>Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS2 Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>A novel and efficient 3D biohybrid photocatalyst, defective MoS2 nanosheets encapsulated carbonized rape pollen, was fabricated and applied to water disinfection. The rape pollen-MoS2 (PM) biohybrid showed excellent dispersibility, high stability, and efficient charge-carrier separation and migration ability, resulting in the highly enhanced photocatalytic inactivation performance toward various waterborne bacteria under different light sources. The inactivation mechanisms were systematically investigated. Reactive species (RSs), including electrons, holes, and reactive oxygen species (•O2 – and •OH), played major roles in inactivating bacteria. The antioxidant system of bacteria exhibited a self-protection capacity by eliminating the photogenerated RSs from PM biohybrid at the early stage of inactivation. With the accumulation of RSs, the cell membrane and membrane-associated functions were destroyed, as suggested by the collapse of cell envelope and subsequent loss of cell respiration and ATP synthesis capacity. The microscopic images further confirmed the destruction of the bacterial membrane. After losing the membrane barrier, the oxidation of cytoplasmic proteins and lipids caused by invaded RSs occurred readily. Finally, the leakage of DNA and RNA announced the irreversible death of bacteria. These results indicated that the bacterial inactivation began with the membrane rupture, followed by the oxidation and leakage of intracellular substances. This work not only provided a new insight into the combination of semiconductors with earth-abundant biomaterials for fabricating high-performance photocatalysts, but also revealed the underlying mechanisms of photocatalytic bacterial inactivation in depth.</description><subject>Antioxidants</subject><subject>Bacteria</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Catalysts</subject><subject>Cell membranes</subject><subject>Collapse</subject><subject>Current carriers</subject><subject>Deactivation</subject><subject>Deoxyribonucleic acid</subject><subject>Disinfection</subject><subject>DNA</subject><subject>Electronics industry</subject><subject>Inactivation</subject><subject>Leakage</subject><subject>Light sources</subject><subject>Lipids</subject><subject>Molybdenum disulfide</subject><subject>New combinations</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Pollen</subject><subject>Rape</subject><subject>Reactive oxygen species</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Water treatment</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkMFLwzAUh4MoOKdnrwGP0vmSNEvrzY2pgw2HU_A2XtPEddRmNpnQi3-7rRuIp_f48Xvfg4-QSwYDBpzdoPYD48MgzUAOuToiPSY5RDKR7Jj0AJiIUjF8OyVn3m8AgAtIeuR7sXbBaQxYNqHQdIQ6mLrAkk6rdi2-MBSuollDkT7j1tCFK0tTRXO35HRUuHWT1UVOx78AH27psqlM_W461sRao4OnWOX_aXOj11gV_sOfkxOLpTcXh9knr_eTl_FjNHt6mI7vZhEKKUOU5KkCtImOhxy5yk2mjBRKWGUzqxEAAQUYlYjU5pgigtZxG2UyTnNpEtEnV3vutnafu1bTauN2ddW-XHEhFIvjVIq2db1vtS7_CgxWneBVF3aXB8HiB_hmcig</recordid><startdate>20200107</startdate><enddate>20200107</enddate><creator>Xiao, Kemeng</creator><creator>Wang, Tianqi</creator><creator>Sun, Mingzhe</creator><creator>Hanif, Aamir</creator><creator>Gu, Qinfen</creator><creator>Tian, Bingbing</creator><creator>Jiang, Zhifeng</creator><creator>Wang, Bo</creator><creator>Sun, Hongli</creator><creator>Shang, Jin</creator><creator>Wong, Po Keung</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6589-6122</orcidid><orcidid>https://orcid.org/0000-0003-1508-6217</orcidid><orcidid>https://orcid.org/0000-0002-2454-8156</orcidid><orcidid>https://orcid.org/0000-0001-9209-4208</orcidid><orcidid>https://orcid.org/0000-0001-5165-0466</orcidid><orcidid>https://orcid.org/0000-0003-3081-960X</orcidid></search><sort><creationdate>20200107</creationdate><title>Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS2 Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms</title><author>Xiao, Kemeng ; Wang, Tianqi ; Sun, Mingzhe ; Hanif, Aamir ; Gu, Qinfen ; Tian, Bingbing ; Jiang, Zhifeng ; Wang, Bo ; Sun, Hongli ; Shang, Jin ; Wong, Po Keung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-8d970af8c462a27deb7e5373f7fbfca00a0a30e7839fda9aa0cc40a3b549d5e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antioxidants</topic><topic>Bacteria</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Catalysts</topic><topic>Cell membranes</topic><topic>Collapse</topic><topic>Current carriers</topic><topic>Deactivation</topic><topic>Deoxyribonucleic acid</topic><topic>Disinfection</topic><topic>DNA</topic><topic>Electronics industry</topic><topic>Inactivation</topic><topic>Leakage</topic><topic>Light sources</topic><topic>Lipids</topic><topic>Molybdenum disulfide</topic><topic>New combinations</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Pollen</topic><topic>Rape</topic><topic>Reactive oxygen species</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Kemeng</creatorcontrib><creatorcontrib>Wang, Tianqi</creatorcontrib><creatorcontrib>Sun, Mingzhe</creatorcontrib><creatorcontrib>Hanif, Aamir</creatorcontrib><creatorcontrib>Gu, Qinfen</creatorcontrib><creatorcontrib>Tian, Bingbing</creatorcontrib><creatorcontrib>Jiang, Zhifeng</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Sun, Hongli</creatorcontrib><creatorcontrib>Shang, Jin</creatorcontrib><creatorcontrib>Wong, Po Keung</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Kemeng</au><au>Wang, Tianqi</au><au>Sun, Mingzhe</au><au>Hanif, Aamir</au><au>Gu, Qinfen</au><au>Tian, Bingbing</au><au>Jiang, Zhifeng</au><au>Wang, Bo</au><au>Sun, Hongli</au><au>Shang, Jin</au><au>Wong, Po Keung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS2 Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-01-07</date><risdate>2020</risdate><volume>54</volume><issue>1</issue><spage>537</spage><epage>549</epage><pages>537-549</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>A novel and efficient 3D biohybrid photocatalyst, defective MoS2 nanosheets encapsulated carbonized rape pollen, was fabricated and applied to water disinfection. The rape pollen-MoS2 (PM) biohybrid showed excellent dispersibility, high stability, and efficient charge-carrier separation and migration ability, resulting in the highly enhanced photocatalytic inactivation performance toward various waterborne bacteria under different light sources. The inactivation mechanisms were systematically investigated. Reactive species (RSs), including electrons, holes, and reactive oxygen species (•O2 – and •OH), played major roles in inactivating bacteria. The antioxidant system of bacteria exhibited a self-protection capacity by eliminating the photogenerated RSs from PM biohybrid at the early stage of inactivation. With the accumulation of RSs, the cell membrane and membrane-associated functions were destroyed, as suggested by the collapse of cell envelope and subsequent loss of cell respiration and ATP synthesis capacity. The microscopic images further confirmed the destruction of the bacterial membrane. After losing the membrane barrier, the oxidation of cytoplasmic proteins and lipids caused by invaded RSs occurred readily. Finally, the leakage of DNA and RNA announced the irreversible death of bacteria. These results indicated that the bacterial inactivation began with the membrane rupture, followed by the oxidation and leakage of intracellular substances. This work not only provided a new insight into the combination of semiconductors with earth-abundant biomaterials for fabricating high-performance photocatalysts, but also revealed the underlying mechanisms of photocatalytic bacterial inactivation in depth.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.9b05627</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6589-6122</orcidid><orcidid>https://orcid.org/0000-0003-1508-6217</orcidid><orcidid>https://orcid.org/0000-0002-2454-8156</orcidid><orcidid>https://orcid.org/0000-0001-9209-4208</orcidid><orcidid>https://orcid.org/0000-0001-5165-0466</orcidid><orcidid>https://orcid.org/0000-0003-3081-960X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2020-01, Vol.54 (1), p.537-549 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_journals_2337144953 |
source | ACS Publications |
subjects | Antioxidants Bacteria Biomaterials Biomedical materials Catalysts Cell membranes Collapse Current carriers Deactivation Deoxyribonucleic acid Disinfection DNA Electronics industry Inactivation Leakage Light sources Lipids Molybdenum disulfide New combinations Oxidation Photocatalysis Photocatalysts Pollen Rape Reactive oxygen species Ribonucleic acid RNA Water treatment |
title | Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS2 Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photocatalytic%20Bacterial%20Inactivation%20by%20a%20Rape%20Pollen-MoS2%20Biohybrid%20Catalyst:%20Synergetic%20Effects%20and%20Inactivation%20Mechanisms&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Xiao,%20Kemeng&rft.date=2020-01-07&rft.volume=54&rft.issue=1&rft.spage=537&rft.epage=549&rft.pages=537-549&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b05627&rft_dat=%3Cproquest_acs_j%3E2337144953%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2337144953&rft_id=info:pmid/&rfr_iscdi=true |