Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration

Accurate temperature field measurement provides critical information in many scientific problems. Herein, a new paradigm for highly sensitive, flexible, negative temperature coefficient (NTC) thermistor‐based artificial skin is reported, with the highest temperature sensing ability reported to date...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-01, Vol.32 (2), p.e1905527-n/a, Article 1905527
Hauptverfasser: Shin, Jaeho, Jeong, Buseong, Kim, Jinmo, Nam, Vu Binh, Yoon, Yeosang, Jung, Jinwook, Hong, Sukjoon, Lee, Habeom, Eom, Hyeonjin, Yeo, Junyeob, Choi, Joonhwa, Lee, Daeho, Ko, Seung Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e1905527
container_title Advanced materials (Weinheim)
container_volume 32
creator Shin, Jaeho
Jeong, Buseong
Kim, Jinmo
Nam, Vu Binh
Yoon, Yeosang
Jung, Jinwook
Hong, Sukjoon
Lee, Habeom
Eom, Hyeonjin
Yeo, Junyeob
Choi, Joonhwa
Lee, Daeho
Ko, Seung Hwan
description Accurate temperature field measurement provides critical information in many scientific problems. Herein, a new paradigm for highly sensitive, flexible, negative temperature coefficient (NTC) thermistor‐based artificial skin is reported, with the highest temperature sensing ability reported to date among previously reported NTC thermistors. This artificial skin is achieved through the development of a novel monolithic laser‐induced reductive sintering scheme and unique monolithic structures. The unique seamless monolithic structure simultaneously integrates two different components (a metal electrode and metal oxide sensing channel) from the same material at ambient pressure, which cannot be achieved by conventional heterogeneous integration through multiple, complex steps of photolithography or vacuum deposition. In addition to superior performance, electronic skin with high temperature sensitivity can be fabricated on heat‐sensitive polymer substrates due to the low‐temperature requirements of the process. As a proof of concept, temperature‐sensitive artificial skin is tested with conformally attachable physiological temperature sensor arrays in the measurement of the temperatures of exhaled breath for the early detection of pathogenic progression in the respiratory system. The proposed highly sensitive flexible temperature sensor and monolithic selective laser reductive sintering are expected to greatly contribute to the development of essential components in various emerging research fields, including soft robotics and healthcare systems. A highly sensitive and fast‐responding monolithically integrated flexible temperature sensor is demonstrated by developing a novel laser thermal process on a thin polymer substrate. The temperature sensor is applied on the face, nasal cavity, and robotic hand to detect a physiological signal or regenerate vivid thermal sensations. The temperature sensor has the potential for temperature‐sensitive E‐skin, soft robotics, and versatile temperature sensing applications.
doi_str_mv 10.1002/adma.201905527
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2337084704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2337084704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4527-56f49bb08a97b832708e796da0cbae393d87ea59a6829862e2495e8a80fac5263</originalsourceid><addsrcrecordid>eNqNkc1P3DAQxa2KqmyBa49VJC6VUJbxZ-zjagsFBOqhII6Rk50UoyTe2gmI_x4vuywSl3LyyPN7M8_PhHyjMKUA7NguOjtlQA1IyYpPZEIlo7kAI3fIBAyXuVFC75KvMd4DgFGgvpBdTpVRpigm5OIP9tEN7gGzW7TBVi1m19gtMdhhDJit2j5kj264S7XtWowxu_K9b9ONq7PzfsC_iXW-3yefG9tGPNice-Tm9OR6fpZf_v51Pp9d5rVIFnOpGmGqCrQ1RaU5K0BjYdTCQl1Z5IYvdIFWGqs0M1oxZMJI1FZDY2vJFN8jP9Zzl8H_GzEOZedijW1re_RjLBmnTAOnAhJ6-A6992Pok7tE8bRZFCASNV1TdfAxBmzKZXCdDU8lhXKVcrlKudymnATfN2PHqsPFFn-NNQFHa-ARK9_E2mFf4xZL_yCM0Gl1qoAmWn-cnrvhJe25H_shSc1G6lp8-o_vcvbzavb2imeAh6jI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2337084704</pqid></control><display><type>article</type><title>Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Shin, Jaeho ; Jeong, Buseong ; Kim, Jinmo ; Nam, Vu Binh ; Yoon, Yeosang ; Jung, Jinwook ; Hong, Sukjoon ; Lee, Habeom ; Eom, Hyeonjin ; Yeo, Junyeob ; Choi, Joonhwa ; Lee, Daeho ; Ko, Seung Hwan</creator><creatorcontrib>Shin, Jaeho ; Jeong, Buseong ; Kim, Jinmo ; Nam, Vu Binh ; Yoon, Yeosang ; Jung, Jinwook ; Hong, Sukjoon ; Lee, Habeom ; Eom, Hyeonjin ; Yeo, Junyeob ; Choi, Joonhwa ; Lee, Daeho ; Ko, Seung Hwan</creatorcontrib><description>Accurate temperature field measurement provides critical information in many scientific problems. Herein, a new paradigm for highly sensitive, flexible, negative temperature coefficient (NTC) thermistor‐based artificial skin is reported, with the highest temperature sensing ability reported to date among previously reported NTC thermistors. This artificial skin is achieved through the development of a novel monolithic laser‐induced reductive sintering scheme and unique monolithic structures. The unique seamless monolithic structure simultaneously integrates two different components (a metal electrode and metal oxide sensing channel) from the same material at ambient pressure, which cannot be achieved by conventional heterogeneous integration through multiple, complex steps of photolithography or vacuum deposition. In addition to superior performance, electronic skin with high temperature sensitivity can be fabricated on heat‐sensitive polymer substrates due to the low‐temperature requirements of the process. As a proof of concept, temperature‐sensitive artificial skin is tested with conformally attachable physiological temperature sensor arrays in the measurement of the temperatures of exhaled breath for the early detection of pathogenic progression in the respiratory system. The proposed highly sensitive flexible temperature sensor and monolithic selective laser reductive sintering are expected to greatly contribute to the development of essential components in various emerging research fields, including soft robotics and healthcare systems. A highly sensitive and fast‐responding monolithically integrated flexible temperature sensor is demonstrated by developing a novel laser thermal process on a thin polymer substrate. The temperature sensor is applied on the face, nasal cavity, and robotic hand to detect a physiological signal or regenerate vivid thermal sensations. The temperature sensor has the potential for temperature‐sensitive E‐skin, soft robotics, and versatile temperature sensing applications.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201905527</identifier><identifier>PMID: 31696977</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Automation ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; electronic skin ; epidermal sensors ; High temperature ; laser direct writing ; Laser sintering ; Manufacturing engineering ; Materials Science ; Materials Science, Multidisciplinary ; Metal oxides ; monolithic sensors ; Nanoscience &amp; Nanotechnology ; Photolithography ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Pressure ; Respiratory system ; Robotics ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Sensor arrays ; Sensors ; Substrates ; Technology ; Temperature ; Temperature distribution ; Temperature sensors ; Thermistors ; Vacuum deposition</subject><ispartof>Advanced materials (Weinheim), 2020-01, Vol.32 (2), p.e1905527-n/a, Article 1905527</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>299</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000494870400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4527-56f49bb08a97b832708e796da0cbae393d87ea59a6829862e2495e8a80fac5263</citedby><cites>FETCH-LOGICAL-c4527-56f49bb08a97b832708e796da0cbae393d87ea59a6829862e2495e8a80fac5263</cites><orcidid>0000-0002-7477-0820 ; 0000-0001-7422-3467 ; 0000-0002-8119-9677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201905527$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201905527$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,28253,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31696977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Jaeho</creatorcontrib><creatorcontrib>Jeong, Buseong</creatorcontrib><creatorcontrib>Kim, Jinmo</creatorcontrib><creatorcontrib>Nam, Vu Binh</creatorcontrib><creatorcontrib>Yoon, Yeosang</creatorcontrib><creatorcontrib>Jung, Jinwook</creatorcontrib><creatorcontrib>Hong, Sukjoon</creatorcontrib><creatorcontrib>Lee, Habeom</creatorcontrib><creatorcontrib>Eom, Hyeonjin</creatorcontrib><creatorcontrib>Yeo, Junyeob</creatorcontrib><creatorcontrib>Choi, Joonhwa</creatorcontrib><creatorcontrib>Lee, Daeho</creatorcontrib><creatorcontrib>Ko, Seung Hwan</creatorcontrib><title>Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration</title><title>Advanced materials (Weinheim)</title><addtitle>ADV MATER</addtitle><addtitle>Adv Mater</addtitle><description>Accurate temperature field measurement provides critical information in many scientific problems. Herein, a new paradigm for highly sensitive, flexible, negative temperature coefficient (NTC) thermistor‐based artificial skin is reported, with the highest temperature sensing ability reported to date among previously reported NTC thermistors. This artificial skin is achieved through the development of a novel monolithic laser‐induced reductive sintering scheme and unique monolithic structures. The unique seamless monolithic structure simultaneously integrates two different components (a metal electrode and metal oxide sensing channel) from the same material at ambient pressure, which cannot be achieved by conventional heterogeneous integration through multiple, complex steps of photolithography or vacuum deposition. In addition to superior performance, electronic skin with high temperature sensitivity can be fabricated on heat‐sensitive polymer substrates due to the low‐temperature requirements of the process. As a proof of concept, temperature‐sensitive artificial skin is tested with conformally attachable physiological temperature sensor arrays in the measurement of the temperatures of exhaled breath for the early detection of pathogenic progression in the respiratory system. The proposed highly sensitive flexible temperature sensor and monolithic selective laser reductive sintering are expected to greatly contribute to the development of essential components in various emerging research fields, including soft robotics and healthcare systems. A highly sensitive and fast‐responding monolithically integrated flexible temperature sensor is demonstrated by developing a novel laser thermal process on a thin polymer substrate. The temperature sensor is applied on the face, nasal cavity, and robotic hand to detect a physiological signal or regenerate vivid thermal sensations. The temperature sensor has the potential for temperature‐sensitive E‐skin, soft robotics, and versatile temperature sensing applications.</description><subject>Automation</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>electronic skin</subject><subject>epidermal sensors</subject><subject>High temperature</subject><subject>laser direct writing</subject><subject>Laser sintering</subject><subject>Manufacturing engineering</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metal oxides</subject><subject>monolithic sensors</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Photolithography</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Pressure</subject><subject>Respiratory system</subject><subject>Robotics</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Substrates</subject><subject>Technology</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Temperature sensors</subject><subject>Thermistors</subject><subject>Vacuum deposition</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc1P3DAQxa2KqmyBa49VJC6VUJbxZ-zjagsFBOqhII6Rk50UoyTe2gmI_x4vuywSl3LyyPN7M8_PhHyjMKUA7NguOjtlQA1IyYpPZEIlo7kAI3fIBAyXuVFC75KvMd4DgFGgvpBdTpVRpigm5OIP9tEN7gGzW7TBVi1m19gtMdhhDJit2j5kj264S7XtWowxu_K9b9ONq7PzfsC_iXW-3yefG9tGPNice-Tm9OR6fpZf_v51Pp9d5rVIFnOpGmGqCrQ1RaU5K0BjYdTCQl1Z5IYvdIFWGqs0M1oxZMJI1FZDY2vJFN8jP9Zzl8H_GzEOZedijW1re_RjLBmnTAOnAhJ6-A6992Pok7tE8bRZFCASNV1TdfAxBmzKZXCdDU8lhXKVcrlKudymnATfN2PHqsPFFn-NNQFHa-ARK9_E2mFf4xZL_yCM0Gl1qoAmWn-cnrvhJe25H_shSc1G6lp8-o_vcvbzavb2imeAh6jI</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Shin, Jaeho</creator><creator>Jeong, Buseong</creator><creator>Kim, Jinmo</creator><creator>Nam, Vu Binh</creator><creator>Yoon, Yeosang</creator><creator>Jung, Jinwook</creator><creator>Hong, Sukjoon</creator><creator>Lee, Habeom</creator><creator>Eom, Hyeonjin</creator><creator>Yeo, Junyeob</creator><creator>Choi, Joonhwa</creator><creator>Lee, Daeho</creator><creator>Ko, Seung Hwan</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7477-0820</orcidid><orcidid>https://orcid.org/0000-0001-7422-3467</orcidid><orcidid>https://orcid.org/0000-0002-8119-9677</orcidid></search><sort><creationdate>20200101</creationdate><title>Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration</title><author>Shin, Jaeho ; Jeong, Buseong ; Kim, Jinmo ; Nam, Vu Binh ; Yoon, Yeosang ; Jung, Jinwook ; Hong, Sukjoon ; Lee, Habeom ; Eom, Hyeonjin ; Yeo, Junyeob ; Choi, Joonhwa ; Lee, Daeho ; Ko, Seung Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4527-56f49bb08a97b832708e796da0cbae393d87ea59a6829862e2495e8a80fac5263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>electronic skin</topic><topic>epidermal sensors</topic><topic>High temperature</topic><topic>laser direct writing</topic><topic>Laser sintering</topic><topic>Manufacturing engineering</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metal oxides</topic><topic>monolithic sensors</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Photolithography</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Pressure</topic><topic>Respiratory system</topic><topic>Robotics</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Substrates</topic><topic>Technology</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Temperature sensors</topic><topic>Thermistors</topic><topic>Vacuum deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Jaeho</creatorcontrib><creatorcontrib>Jeong, Buseong</creatorcontrib><creatorcontrib>Kim, Jinmo</creatorcontrib><creatorcontrib>Nam, Vu Binh</creatorcontrib><creatorcontrib>Yoon, Yeosang</creatorcontrib><creatorcontrib>Jung, Jinwook</creatorcontrib><creatorcontrib>Hong, Sukjoon</creatorcontrib><creatorcontrib>Lee, Habeom</creatorcontrib><creatorcontrib>Eom, Hyeonjin</creatorcontrib><creatorcontrib>Yeo, Junyeob</creatorcontrib><creatorcontrib>Choi, Joonhwa</creatorcontrib><creatorcontrib>Lee, Daeho</creatorcontrib><creatorcontrib>Ko, Seung Hwan</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Jaeho</au><au>Jeong, Buseong</au><au>Kim, Jinmo</au><au>Nam, Vu Binh</au><au>Yoon, Yeosang</au><au>Jung, Jinwook</au><au>Hong, Sukjoon</au><au>Lee, Habeom</au><au>Eom, Hyeonjin</au><au>Yeo, Junyeob</au><au>Choi, Joonhwa</au><au>Lee, Daeho</au><au>Ko, Seung Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration</atitle><jtitle>Advanced materials (Weinheim)</jtitle><stitle>ADV MATER</stitle><addtitle>Adv Mater</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>32</volume><issue>2</issue><spage>e1905527</spage><epage>n/a</epage><pages>e1905527-n/a</pages><artnum>1905527</artnum><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Accurate temperature field measurement provides critical information in many scientific problems. Herein, a new paradigm for highly sensitive, flexible, negative temperature coefficient (NTC) thermistor‐based artificial skin is reported, with the highest temperature sensing ability reported to date among previously reported NTC thermistors. This artificial skin is achieved through the development of a novel monolithic laser‐induced reductive sintering scheme and unique monolithic structures. The unique seamless monolithic structure simultaneously integrates two different components (a metal electrode and metal oxide sensing channel) from the same material at ambient pressure, which cannot be achieved by conventional heterogeneous integration through multiple, complex steps of photolithography or vacuum deposition. In addition to superior performance, electronic skin with high temperature sensitivity can be fabricated on heat‐sensitive polymer substrates due to the low‐temperature requirements of the process. As a proof of concept, temperature‐sensitive artificial skin is tested with conformally attachable physiological temperature sensor arrays in the measurement of the temperatures of exhaled breath for the early detection of pathogenic progression in the respiratory system. The proposed highly sensitive flexible temperature sensor and monolithic selective laser reductive sintering are expected to greatly contribute to the development of essential components in various emerging research fields, including soft robotics and healthcare systems. A highly sensitive and fast‐responding monolithically integrated flexible temperature sensor is demonstrated by developing a novel laser thermal process on a thin polymer substrate. The temperature sensor is applied on the face, nasal cavity, and robotic hand to detect a physiological signal or regenerate vivid thermal sensations. The temperature sensor has the potential for temperature‐sensitive E‐skin, soft robotics, and versatile temperature sensing applications.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>31696977</pmid><doi>10.1002/adma.201905527</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7477-0820</orcidid><orcidid>https://orcid.org/0000-0001-7422-3467</orcidid><orcidid>https://orcid.org/0000-0002-8119-9677</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-01, Vol.32 (2), p.e1905527-n/a, Article 1905527
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2337084704
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Automation
Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
electronic skin
epidermal sensors
High temperature
laser direct writing
Laser sintering
Manufacturing engineering
Materials Science
Materials Science, Multidisciplinary
Metal oxides
monolithic sensors
Nanoscience & Nanotechnology
Photolithography
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Pressure
Respiratory system
Robotics
Science & Technology
Science & Technology - Other Topics
Sensor arrays
Sensors
Substrates
Technology
Temperature
Temperature distribution
Temperature sensors
Thermistors
Vacuum deposition
title Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitive%20Wearable%20Temperature%20Sensor%20with%20Seamless%20Monolithic%20Integration&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Shin,%20Jaeho&rft.date=2020-01-01&rft.volume=32&rft.issue=2&rft.spage=e1905527&rft.epage=n/a&rft.pages=e1905527-n/a&rft.artnum=1905527&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201905527&rft_dat=%3Cproquest_pubme%3E2337084704%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2337084704&rft_id=info:pmid/31696977&rfr_iscdi=true