Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration
Accurate temperature field measurement provides critical information in many scientific problems. Herein, a new paradigm for highly sensitive, flexible, negative temperature coefficient (NTC) thermistor‐based artificial skin is reported, with the highest temperature sensing ability reported to date...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-01, Vol.32 (2), p.e1905527-n/a, Article 1905527 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e1905527 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Shin, Jaeho Jeong, Buseong Kim, Jinmo Nam, Vu Binh Yoon, Yeosang Jung, Jinwook Hong, Sukjoon Lee, Habeom Eom, Hyeonjin Yeo, Junyeob Choi, Joonhwa Lee, Daeho Ko, Seung Hwan |
description | Accurate temperature field measurement provides critical information in many scientific problems. Herein, a new paradigm for highly sensitive, flexible, negative temperature coefficient (NTC) thermistor‐based artificial skin is reported, with the highest temperature sensing ability reported to date among previously reported NTC thermistors. This artificial skin is achieved through the development of a novel monolithic laser‐induced reductive sintering scheme and unique monolithic structures. The unique seamless monolithic structure simultaneously integrates two different components (a metal electrode and metal oxide sensing channel) from the same material at ambient pressure, which cannot be achieved by conventional heterogeneous integration through multiple, complex steps of photolithography or vacuum deposition. In addition to superior performance, electronic skin with high temperature sensitivity can be fabricated on heat‐sensitive polymer substrates due to the low‐temperature requirements of the process. As a proof of concept, temperature‐sensitive artificial skin is tested with conformally attachable physiological temperature sensor arrays in the measurement of the temperatures of exhaled breath for the early detection of pathogenic progression in the respiratory system. The proposed highly sensitive flexible temperature sensor and monolithic selective laser reductive sintering are expected to greatly contribute to the development of essential components in various emerging research fields, including soft robotics and healthcare systems.
A highly sensitive and fast‐responding monolithically integrated flexible temperature sensor is demonstrated by developing a novel laser thermal process on a thin polymer substrate. The temperature sensor is applied on the face, nasal cavity, and robotic hand to detect a physiological signal or regenerate vivid thermal sensations. The temperature sensor has the potential for temperature‐sensitive E‐skin, soft robotics, and versatile temperature sensing applications. |
doi_str_mv | 10.1002/adma.201905527 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2337084704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2337084704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4527-56f49bb08a97b832708e796da0cbae393d87ea59a6829862e2495e8a80fac5263</originalsourceid><addsrcrecordid>eNqNkc1P3DAQxa2KqmyBa49VJC6VUJbxZ-zjagsFBOqhII6Rk50UoyTe2gmI_x4vuywSl3LyyPN7M8_PhHyjMKUA7NguOjtlQA1IyYpPZEIlo7kAI3fIBAyXuVFC75KvMd4DgFGgvpBdTpVRpigm5OIP9tEN7gGzW7TBVi1m19gtMdhhDJit2j5kj264S7XtWowxu_K9b9ONq7PzfsC_iXW-3yefG9tGPNice-Tm9OR6fpZf_v51Pp9d5rVIFnOpGmGqCrQ1RaU5K0BjYdTCQl1Z5IYvdIFWGqs0M1oxZMJI1FZDY2vJFN8jP9Zzl8H_GzEOZedijW1re_RjLBmnTAOnAhJ6-A6992Pok7tE8bRZFCASNV1TdfAxBmzKZXCdDU8lhXKVcrlKudymnATfN2PHqsPFFn-NNQFHa-ARK9_E2mFf4xZL_yCM0Gl1qoAmWn-cnrvhJe25H_shSc1G6lp8-o_vcvbzavb2imeAh6jI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2337084704</pqid></control><display><type>article</type><title>Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Shin, Jaeho ; Jeong, Buseong ; Kim, Jinmo ; Nam, Vu Binh ; Yoon, Yeosang ; Jung, Jinwook ; Hong, Sukjoon ; Lee, Habeom ; Eom, Hyeonjin ; Yeo, Junyeob ; Choi, Joonhwa ; Lee, Daeho ; Ko, Seung Hwan</creator><creatorcontrib>Shin, Jaeho ; Jeong, Buseong ; Kim, Jinmo ; Nam, Vu Binh ; Yoon, Yeosang ; Jung, Jinwook ; Hong, Sukjoon ; Lee, Habeom ; Eom, Hyeonjin ; Yeo, Junyeob ; Choi, Joonhwa ; Lee, Daeho ; Ko, Seung Hwan</creatorcontrib><description>Accurate temperature field measurement provides critical information in many scientific problems. Herein, a new paradigm for highly sensitive, flexible, negative temperature coefficient (NTC) thermistor‐based artificial skin is reported, with the highest temperature sensing ability reported to date among previously reported NTC thermistors. This artificial skin is achieved through the development of a novel monolithic laser‐induced reductive sintering scheme and unique monolithic structures. The unique seamless monolithic structure simultaneously integrates two different components (a metal electrode and metal oxide sensing channel) from the same material at ambient pressure, which cannot be achieved by conventional heterogeneous integration through multiple, complex steps of photolithography or vacuum deposition. In addition to superior performance, electronic skin with high temperature sensitivity can be fabricated on heat‐sensitive polymer substrates due to the low‐temperature requirements of the process. As a proof of concept, temperature‐sensitive artificial skin is tested with conformally attachable physiological temperature sensor arrays in the measurement of the temperatures of exhaled breath for the early detection of pathogenic progression in the respiratory system. The proposed highly sensitive flexible temperature sensor and monolithic selective laser reductive sintering are expected to greatly contribute to the development of essential components in various emerging research fields, including soft robotics and healthcare systems.
A highly sensitive and fast‐responding monolithically integrated flexible temperature sensor is demonstrated by developing a novel laser thermal process on a thin polymer substrate. The temperature sensor is applied on the face, nasal cavity, and robotic hand to detect a physiological signal or regenerate vivid thermal sensations. The temperature sensor has the potential for temperature‐sensitive E‐skin, soft robotics, and versatile temperature sensing applications.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201905527</identifier><identifier>PMID: 31696977</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Automation ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; electronic skin ; epidermal sensors ; High temperature ; laser direct writing ; Laser sintering ; Manufacturing engineering ; Materials Science ; Materials Science, Multidisciplinary ; Metal oxides ; monolithic sensors ; Nanoscience & Nanotechnology ; Photolithography ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Pressure ; Respiratory system ; Robotics ; Science & Technology ; Science & Technology - Other Topics ; Sensor arrays ; Sensors ; Substrates ; Technology ; Temperature ; Temperature distribution ; Temperature sensors ; Thermistors ; Vacuum deposition</subject><ispartof>Advanced materials (Weinheim), 2020-01, Vol.32 (2), p.e1905527-n/a, Article 1905527</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>299</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000494870400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4527-56f49bb08a97b832708e796da0cbae393d87ea59a6829862e2495e8a80fac5263</citedby><cites>FETCH-LOGICAL-c4527-56f49bb08a97b832708e796da0cbae393d87ea59a6829862e2495e8a80fac5263</cites><orcidid>0000-0002-7477-0820 ; 0000-0001-7422-3467 ; 0000-0002-8119-9677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201905527$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201905527$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,28253,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31696977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Jaeho</creatorcontrib><creatorcontrib>Jeong, Buseong</creatorcontrib><creatorcontrib>Kim, Jinmo</creatorcontrib><creatorcontrib>Nam, Vu Binh</creatorcontrib><creatorcontrib>Yoon, Yeosang</creatorcontrib><creatorcontrib>Jung, Jinwook</creatorcontrib><creatorcontrib>Hong, Sukjoon</creatorcontrib><creatorcontrib>Lee, Habeom</creatorcontrib><creatorcontrib>Eom, Hyeonjin</creatorcontrib><creatorcontrib>Yeo, Junyeob</creatorcontrib><creatorcontrib>Choi, Joonhwa</creatorcontrib><creatorcontrib>Lee, Daeho</creatorcontrib><creatorcontrib>Ko, Seung Hwan</creatorcontrib><title>Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration</title><title>Advanced materials (Weinheim)</title><addtitle>ADV MATER</addtitle><addtitle>Adv Mater</addtitle><description>Accurate temperature field measurement provides critical information in many scientific problems. Herein, a new paradigm for highly sensitive, flexible, negative temperature coefficient (NTC) thermistor‐based artificial skin is reported, with the highest temperature sensing ability reported to date among previously reported NTC thermistors. This artificial skin is achieved through the development of a novel monolithic laser‐induced reductive sintering scheme and unique monolithic structures. The unique seamless monolithic structure simultaneously integrates two different components (a metal electrode and metal oxide sensing channel) from the same material at ambient pressure, which cannot be achieved by conventional heterogeneous integration through multiple, complex steps of photolithography or vacuum deposition. In addition to superior performance, electronic skin with high temperature sensitivity can be fabricated on heat‐sensitive polymer substrates due to the low‐temperature requirements of the process. As a proof of concept, temperature‐sensitive artificial skin is tested with conformally attachable physiological temperature sensor arrays in the measurement of the temperatures of exhaled breath for the early detection of pathogenic progression in the respiratory system. The proposed highly sensitive flexible temperature sensor and monolithic selective laser reductive sintering are expected to greatly contribute to the development of essential components in various emerging research fields, including soft robotics and healthcare systems.
A highly sensitive and fast‐responding monolithically integrated flexible temperature sensor is demonstrated by developing a novel laser thermal process on a thin polymer substrate. The temperature sensor is applied on the face, nasal cavity, and robotic hand to detect a physiological signal or regenerate vivid thermal sensations. The temperature sensor has the potential for temperature‐sensitive E‐skin, soft robotics, and versatile temperature sensing applications.</description><subject>Automation</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>electronic skin</subject><subject>epidermal sensors</subject><subject>High temperature</subject><subject>laser direct writing</subject><subject>Laser sintering</subject><subject>Manufacturing engineering</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metal oxides</subject><subject>monolithic sensors</subject><subject>Nanoscience & Nanotechnology</subject><subject>Photolithography</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Pressure</subject><subject>Respiratory system</subject><subject>Robotics</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Substrates</subject><subject>Technology</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Temperature sensors</subject><subject>Thermistors</subject><subject>Vacuum deposition</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc1P3DAQxa2KqmyBa49VJC6VUJbxZ-zjagsFBOqhII6Rk50UoyTe2gmI_x4vuywSl3LyyPN7M8_PhHyjMKUA7NguOjtlQA1IyYpPZEIlo7kAI3fIBAyXuVFC75KvMd4DgFGgvpBdTpVRpigm5OIP9tEN7gGzW7TBVi1m19gtMdhhDJit2j5kj264S7XtWowxu_K9b9ONq7PzfsC_iXW-3yefG9tGPNice-Tm9OR6fpZf_v51Pp9d5rVIFnOpGmGqCrQ1RaU5K0BjYdTCQl1Z5IYvdIFWGqs0M1oxZMJI1FZDY2vJFN8jP9Zzl8H_GzEOZedijW1re_RjLBmnTAOnAhJ6-A6992Pok7tE8bRZFCASNV1TdfAxBmzKZXCdDU8lhXKVcrlKudymnATfN2PHqsPFFn-NNQFHa-ARK9_E2mFf4xZL_yCM0Gl1qoAmWn-cnrvhJe25H_shSc1G6lp8-o_vcvbzavb2imeAh6jI</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Shin, Jaeho</creator><creator>Jeong, Buseong</creator><creator>Kim, Jinmo</creator><creator>Nam, Vu Binh</creator><creator>Yoon, Yeosang</creator><creator>Jung, Jinwook</creator><creator>Hong, Sukjoon</creator><creator>Lee, Habeom</creator><creator>Eom, Hyeonjin</creator><creator>Yeo, Junyeob</creator><creator>Choi, Joonhwa</creator><creator>Lee, Daeho</creator><creator>Ko, Seung Hwan</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7477-0820</orcidid><orcidid>https://orcid.org/0000-0001-7422-3467</orcidid><orcidid>https://orcid.org/0000-0002-8119-9677</orcidid></search><sort><creationdate>20200101</creationdate><title>Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration</title><author>Shin, Jaeho ; Jeong, Buseong ; Kim, Jinmo ; Nam, Vu Binh ; Yoon, Yeosang ; Jung, Jinwook ; Hong, Sukjoon ; Lee, Habeom ; Eom, Hyeonjin ; Yeo, Junyeob ; Choi, Joonhwa ; Lee, Daeho ; Ko, Seung Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4527-56f49bb08a97b832708e796da0cbae393d87ea59a6829862e2495e8a80fac5263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>electronic skin</topic><topic>epidermal sensors</topic><topic>High temperature</topic><topic>laser direct writing</topic><topic>Laser sintering</topic><topic>Manufacturing engineering</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metal oxides</topic><topic>monolithic sensors</topic><topic>Nanoscience & Nanotechnology</topic><topic>Photolithography</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Pressure</topic><topic>Respiratory system</topic><topic>Robotics</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Substrates</topic><topic>Technology</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Temperature sensors</topic><topic>Thermistors</topic><topic>Vacuum deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Jaeho</creatorcontrib><creatorcontrib>Jeong, Buseong</creatorcontrib><creatorcontrib>Kim, Jinmo</creatorcontrib><creatorcontrib>Nam, Vu Binh</creatorcontrib><creatorcontrib>Yoon, Yeosang</creatorcontrib><creatorcontrib>Jung, Jinwook</creatorcontrib><creatorcontrib>Hong, Sukjoon</creatorcontrib><creatorcontrib>Lee, Habeom</creatorcontrib><creatorcontrib>Eom, Hyeonjin</creatorcontrib><creatorcontrib>Yeo, Junyeob</creatorcontrib><creatorcontrib>Choi, Joonhwa</creatorcontrib><creatorcontrib>Lee, Daeho</creatorcontrib><creatorcontrib>Ko, Seung Hwan</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Jaeho</au><au>Jeong, Buseong</au><au>Kim, Jinmo</au><au>Nam, Vu Binh</au><au>Yoon, Yeosang</au><au>Jung, Jinwook</au><au>Hong, Sukjoon</au><au>Lee, Habeom</au><au>Eom, Hyeonjin</au><au>Yeo, Junyeob</au><au>Choi, Joonhwa</au><au>Lee, Daeho</au><au>Ko, Seung Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration</atitle><jtitle>Advanced materials (Weinheim)</jtitle><stitle>ADV MATER</stitle><addtitle>Adv Mater</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>32</volume><issue>2</issue><spage>e1905527</spage><epage>n/a</epage><pages>e1905527-n/a</pages><artnum>1905527</artnum><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Accurate temperature field measurement provides critical information in many scientific problems. Herein, a new paradigm for highly sensitive, flexible, negative temperature coefficient (NTC) thermistor‐based artificial skin is reported, with the highest temperature sensing ability reported to date among previously reported NTC thermistors. This artificial skin is achieved through the development of a novel monolithic laser‐induced reductive sintering scheme and unique monolithic structures. The unique seamless monolithic structure simultaneously integrates two different components (a metal electrode and metal oxide sensing channel) from the same material at ambient pressure, which cannot be achieved by conventional heterogeneous integration through multiple, complex steps of photolithography or vacuum deposition. In addition to superior performance, electronic skin with high temperature sensitivity can be fabricated on heat‐sensitive polymer substrates due to the low‐temperature requirements of the process. As a proof of concept, temperature‐sensitive artificial skin is tested with conformally attachable physiological temperature sensor arrays in the measurement of the temperatures of exhaled breath for the early detection of pathogenic progression in the respiratory system. The proposed highly sensitive flexible temperature sensor and monolithic selective laser reductive sintering are expected to greatly contribute to the development of essential components in various emerging research fields, including soft robotics and healthcare systems.
A highly sensitive and fast‐responding monolithically integrated flexible temperature sensor is demonstrated by developing a novel laser thermal process on a thin polymer substrate. The temperature sensor is applied on the face, nasal cavity, and robotic hand to detect a physiological signal or regenerate vivid thermal sensations. The temperature sensor has the potential for temperature‐sensitive E‐skin, soft robotics, and versatile temperature sensing applications.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>31696977</pmid><doi>10.1002/adma.201905527</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7477-0820</orcidid><orcidid>https://orcid.org/0000-0001-7422-3467</orcidid><orcidid>https://orcid.org/0000-0002-8119-9677</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-01, Vol.32 (2), p.e1905527-n/a, Article 1905527 |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_journals_2337084704 |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Automation Chemistry Chemistry, Multidisciplinary Chemistry, Physical electronic skin epidermal sensors High temperature laser direct writing Laser sintering Manufacturing engineering Materials Science Materials Science, Multidisciplinary Metal oxides monolithic sensors Nanoscience & Nanotechnology Photolithography Physical Sciences Physics Physics, Applied Physics, Condensed Matter Pressure Respiratory system Robotics Science & Technology Science & Technology - Other Topics Sensor arrays Sensors Substrates Technology Temperature Temperature distribution Temperature sensors Thermistors Vacuum deposition |
title | Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitive%20Wearable%20Temperature%20Sensor%20with%20Seamless%20Monolithic%20Integration&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Shin,%20Jaeho&rft.date=2020-01-01&rft.volume=32&rft.issue=2&rft.spage=e1905527&rft.epage=n/a&rft.pages=e1905527-n/a&rft.artnum=1905527&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201905527&rft_dat=%3Cproquest_pubme%3E2337084704%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2337084704&rft_id=info:pmid/31696977&rfr_iscdi=true |