Chemistry in carbon-rich protoplanetary disks: Effect of carbon grain destruction
The Earth is dramatically carbon poor comparing to the interstellar medium and the proto-sun. The carbon to silicon ratios in inner solar system objects show a correlation with heliocentric distance, which suggests that the destruction of carbon grains has occurred before planet formation. To examin...
Gespeichert in:
Veröffentlicht in: | Proceedings of the International Astronomical Union 2018-08, Vol.14 (S345), p.289-290 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 290 |
---|---|
container_issue | S345 |
container_start_page | 289 |
container_title | Proceedings of the International Astronomical Union |
container_volume | 14 |
creator | Wei, Chen-En Nomura, Hideko Lee, Jeong-Eun Ip, Wing-Huen Walsh, Catherine Millar, T. J. |
description | The Earth is dramatically carbon poor comparing to the interstellar medium and the proto-sun. The carbon to silicon ratios in inner solar system objects show a correlation with heliocentric distance, which suggests that the destruction of carbon grains has occurred before planet formation. To examine this hypothesis, we perform model calculations using a chemical reaction network under the physical conditions typical of protoplanetary disks. Our results show that, when carbonaceous grains are destroyed and converted into the gas phase and the gas becomes carbon-rich, the abundances of carbon-bearing species such as HCN and carbon-chain molecules, increase dramatically near the midplane, while oxygen-bearing species such as H2O and CO2 are depleted. The carbon to silicon ratios obtained by our model calculations qualitatively reproduce the observed gradient with disk radius, but there are some quantitative discrepancies from the observed values of the solar system objects. We adopted the model of a disk around a Herbig Ae star and performed line radiative transfer calculations to examine the effect of carbon grain destruction through observations with ALMA. The results indicate that HCN, H13 CN and c-C3 H2 may be good tracers of this process. |
doi_str_mv | 10.1017/S1743921318008633 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2336207497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1743921318008633</cupid><sourcerecordid>2336207497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-929e1c45553573065e9b9c0b0a78cea68f68afe5867bfcdca0a9b977113641b03</originalsourceid><addsrcrecordid>eNp1UEtPwzAMjhBIjMEP4FaJc8Fumke5oWk8pEkIAecqTZMtY2tG0h7492RaBQfEyZb9vWxCLhGuEVDcvKIoaVUgRQkgOaVHZLIf5VVR4PFPj_SUnMW4Bii5pGxCXmYrs3WxD1-Z6zKtQuO7PDi9ynbB9363UZ3pVdq2Ln7E22xurdF95u2IzZZBJWJrksSge-e7c3Ji1Saai7FOyfv9_G32mC-eH55md4tcFwz6lKUyqEvGGGWCAmemaioNDSghtVFcWi6VNUxy0VjdagUqAYRApLzEBuiUXB10U9DPIfnXaz-ELlnWBaW8AFFWIqHwgNLBxxiMrXfBbdNBNUK9_1z953OJQ0eO2jbBtUvzK_0_6xvdEG_a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336207497</pqid></control><display><type>article</type><title>Chemistry in carbon-rich protoplanetary disks: Effect of carbon grain destruction</title><source>Cambridge University Press Journals Complete</source><creator>Wei, Chen-En ; Nomura, Hideko ; Lee, Jeong-Eun ; Ip, Wing-Huen ; Walsh, Catherine ; Millar, T. J.</creator><creatorcontrib>Wei, Chen-En ; Nomura, Hideko ; Lee, Jeong-Eun ; Ip, Wing-Huen ; Walsh, Catherine ; Millar, T. J.</creatorcontrib><description>The Earth is dramatically carbon poor comparing to the interstellar medium and the proto-sun. The carbon to silicon ratios in inner solar system objects show a correlation with heliocentric distance, which suggests that the destruction of carbon grains has occurred before planet formation. To examine this hypothesis, we perform model calculations using a chemical reaction network under the physical conditions typical of protoplanetary disks. Our results show that, when carbonaceous grains are destroyed and converted into the gas phase and the gas becomes carbon-rich, the abundances of carbon-bearing species such as HCN and carbon-chain molecules, increase dramatically near the midplane, while oxygen-bearing species such as H2O and CO2 are depleted. The carbon to silicon ratios obtained by our model calculations qualitatively reproduce the observed gradient with disk radius, but there are some quantitative discrepancies from the observed values of the solar system objects. We adopted the model of a disk around a Herbig Ae star and performed line radiative transfer calculations to examine the effect of carbon grain destruction through observations with ALMA. The results indicate that HCN, H13 CN and c-C3 H2 may be good tracers of this process.</description><identifier>ISSN: 1743-9213</identifier><identifier>EISSN: 1743-9221</identifier><identifier>DOI: 10.1017/S1743921318008633</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Astronomy ; Carbon ; Carbon dioxide ; Chemical reactions ; Contributed Papers ; Destruction ; Inner solar system ; Interstellar matter ; Mathematical models ; Organic chemistry ; Planet formation ; Protoplanets ; Radiative transfer ; Silicon ; Solar system ; Tracers ; Vapor phases</subject><ispartof>Proceedings of the International Astronomical Union, 2018-08, Vol.14 (S345), p.289-290</ispartof><rights>International Astronomical Union 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-929e1c45553573065e9b9c0b0a78cea68f68afe5867bfcdca0a9b977113641b03</cites><orcidid>0000-0002-2944-4794 ; 0000-0001-6078-786X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1743921318008633/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Wei, Chen-En</creatorcontrib><creatorcontrib>Nomura, Hideko</creatorcontrib><creatorcontrib>Lee, Jeong-Eun</creatorcontrib><creatorcontrib>Ip, Wing-Huen</creatorcontrib><creatorcontrib>Walsh, Catherine</creatorcontrib><creatorcontrib>Millar, T. J.</creatorcontrib><title>Chemistry in carbon-rich protoplanetary disks: Effect of carbon grain destruction</title><title>Proceedings of the International Astronomical Union</title><addtitle>Proc. IAU</addtitle><description>The Earth is dramatically carbon poor comparing to the interstellar medium and the proto-sun. The carbon to silicon ratios in inner solar system objects show a correlation with heliocentric distance, which suggests that the destruction of carbon grains has occurred before planet formation. To examine this hypothesis, we perform model calculations using a chemical reaction network under the physical conditions typical of protoplanetary disks. Our results show that, when carbonaceous grains are destroyed and converted into the gas phase and the gas becomes carbon-rich, the abundances of carbon-bearing species such as HCN and carbon-chain molecules, increase dramatically near the midplane, while oxygen-bearing species such as H2O and CO2 are depleted. The carbon to silicon ratios obtained by our model calculations qualitatively reproduce the observed gradient with disk radius, but there are some quantitative discrepancies from the observed values of the solar system objects. We adopted the model of a disk around a Herbig Ae star and performed line radiative transfer calculations to examine the effect of carbon grain destruction through observations with ALMA. The results indicate that HCN, H13 CN and c-C3 H2 may be good tracers of this process.</description><subject>Astronomy</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Chemical reactions</subject><subject>Contributed Papers</subject><subject>Destruction</subject><subject>Inner solar system</subject><subject>Interstellar matter</subject><subject>Mathematical models</subject><subject>Organic chemistry</subject><subject>Planet formation</subject><subject>Protoplanets</subject><subject>Radiative transfer</subject><subject>Silicon</subject><subject>Solar system</subject><subject>Tracers</subject><subject>Vapor phases</subject><issn>1743-9213</issn><issn>1743-9221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UEtPwzAMjhBIjMEP4FaJc8Fumke5oWk8pEkIAecqTZMtY2tG0h7492RaBQfEyZb9vWxCLhGuEVDcvKIoaVUgRQkgOaVHZLIf5VVR4PFPj_SUnMW4Bii5pGxCXmYrs3WxD1-Z6zKtQuO7PDi9ynbB9363UZ3pVdq2Ln7E22xurdF95u2IzZZBJWJrksSge-e7c3Ji1Saai7FOyfv9_G32mC-eH55md4tcFwz6lKUyqEvGGGWCAmemaioNDSghtVFcWi6VNUxy0VjdagUqAYRApLzEBuiUXB10U9DPIfnXaz-ELlnWBaW8AFFWIqHwgNLBxxiMrXfBbdNBNUK9_1z953OJQ0eO2jbBtUvzK_0_6xvdEG_a</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Wei, Chen-En</creator><creator>Nomura, Hideko</creator><creator>Lee, Jeong-Eun</creator><creator>Ip, Wing-Huen</creator><creator>Walsh, Catherine</creator><creator>Millar, T. J.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2944-4794</orcidid><orcidid>https://orcid.org/0000-0001-6078-786X</orcidid></search><sort><creationdate>201808</creationdate><title>Chemistry in carbon-rich protoplanetary disks: Effect of carbon grain destruction</title><author>Wei, Chen-En ; Nomura, Hideko ; Lee, Jeong-Eun ; Ip, Wing-Huen ; Walsh, Catherine ; Millar, T. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-929e1c45553573065e9b9c0b0a78cea68f68afe5867bfcdca0a9b977113641b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astronomy</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Chemical reactions</topic><topic>Contributed Papers</topic><topic>Destruction</topic><topic>Inner solar system</topic><topic>Interstellar matter</topic><topic>Mathematical models</topic><topic>Organic chemistry</topic><topic>Planet formation</topic><topic>Protoplanets</topic><topic>Radiative transfer</topic><topic>Silicon</topic><topic>Solar system</topic><topic>Tracers</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Chen-En</creatorcontrib><creatorcontrib>Nomura, Hideko</creatorcontrib><creatorcontrib>Lee, Jeong-Eun</creatorcontrib><creatorcontrib>Ip, Wing-Huen</creatorcontrib><creatorcontrib>Walsh, Catherine</creatorcontrib><creatorcontrib>Millar, T. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the International Astronomical Union</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Chen-En</au><au>Nomura, Hideko</au><au>Lee, Jeong-Eun</au><au>Ip, Wing-Huen</au><au>Walsh, Catherine</au><au>Millar, T. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemistry in carbon-rich protoplanetary disks: Effect of carbon grain destruction</atitle><jtitle>Proceedings of the International Astronomical Union</jtitle><addtitle>Proc. IAU</addtitle><date>2018-08</date><risdate>2018</risdate><volume>14</volume><issue>S345</issue><spage>289</spage><epage>290</epage><pages>289-290</pages><issn>1743-9213</issn><eissn>1743-9221</eissn><abstract>The Earth is dramatically carbon poor comparing to the interstellar medium and the proto-sun. The carbon to silicon ratios in inner solar system objects show a correlation with heliocentric distance, which suggests that the destruction of carbon grains has occurred before planet formation. To examine this hypothesis, we perform model calculations using a chemical reaction network under the physical conditions typical of protoplanetary disks. Our results show that, when carbonaceous grains are destroyed and converted into the gas phase and the gas becomes carbon-rich, the abundances of carbon-bearing species such as HCN and carbon-chain molecules, increase dramatically near the midplane, while oxygen-bearing species such as H2O and CO2 are depleted. The carbon to silicon ratios obtained by our model calculations qualitatively reproduce the observed gradient with disk radius, but there are some quantitative discrepancies from the observed values of the solar system objects. We adopted the model of a disk around a Herbig Ae star and performed line radiative transfer calculations to examine the effect of carbon grain destruction through observations with ALMA. The results indicate that HCN, H13 CN and c-C3 H2 may be good tracers of this process.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1743921318008633</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-2944-4794</orcidid><orcidid>https://orcid.org/0000-0001-6078-786X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1743-9213 |
ispartof | Proceedings of the International Astronomical Union, 2018-08, Vol.14 (S345), p.289-290 |
issn | 1743-9213 1743-9221 |
language | eng |
recordid | cdi_proquest_journals_2336207497 |
source | Cambridge University Press Journals Complete |
subjects | Astronomy Carbon Carbon dioxide Chemical reactions Contributed Papers Destruction Inner solar system Interstellar matter Mathematical models Organic chemistry Planet formation Protoplanets Radiative transfer Silicon Solar system Tracers Vapor phases |
title | Chemistry in carbon-rich protoplanetary disks: Effect of carbon grain destruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemistry%20in%20carbon-rich%20protoplanetary%20disks:%20Effect%20of%20carbon%20grain%20destruction&rft.jtitle=Proceedings%20of%20the%20International%20Astronomical%20Union&rft.au=Wei,%20Chen-En&rft.date=2018-08&rft.volume=14&rft.issue=S345&rft.spage=289&rft.epage=290&rft.pages=289-290&rft.issn=1743-9213&rft.eissn=1743-9221&rft_id=info:doi/10.1017/S1743921318008633&rft_dat=%3Cproquest_cross%3E2336207497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2336207497&rft_id=info:pmid/&rft_cupid=10_1017_S1743921318008633&rfr_iscdi=true |