Chemistry in carbon-rich protoplanetary disks: Effect of carbon grain destruction

The Earth is dramatically carbon poor comparing to the interstellar medium and the proto-sun. The carbon to silicon ratios in inner solar system objects show a correlation with heliocentric distance, which suggests that the destruction of carbon grains has occurred before planet formation. To examin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the International Astronomical Union 2018-08, Vol.14 (S345), p.289-290
Hauptverfasser: Wei, Chen-En, Nomura, Hideko, Lee, Jeong-Eun, Ip, Wing-Huen, Walsh, Catherine, Millar, T. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue S345
container_start_page 289
container_title Proceedings of the International Astronomical Union
container_volume 14
creator Wei, Chen-En
Nomura, Hideko
Lee, Jeong-Eun
Ip, Wing-Huen
Walsh, Catherine
Millar, T. J.
description The Earth is dramatically carbon poor comparing to the interstellar medium and the proto-sun. The carbon to silicon ratios in inner solar system objects show a correlation with heliocentric distance, which suggests that the destruction of carbon grains has occurred before planet formation. To examine this hypothesis, we perform model calculations using a chemical reaction network under the physical conditions typical of protoplanetary disks. Our results show that, when carbonaceous grains are destroyed and converted into the gas phase and the gas becomes carbon-rich, the abundances of carbon-bearing species such as HCN and carbon-chain molecules, increase dramatically near the midplane, while oxygen-bearing species such as H2O and CO2 are depleted. The carbon to silicon ratios obtained by our model calculations qualitatively reproduce the observed gradient with disk radius, but there are some quantitative discrepancies from the observed values of the solar system objects. We adopted the model of a disk around a Herbig Ae star and performed line radiative transfer calculations to examine the effect of carbon grain destruction through observations with ALMA. The results indicate that HCN, H13 CN and c-C3 H2 may be good tracers of this process.
doi_str_mv 10.1017/S1743921318008633
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2336207497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1743921318008633</cupid><sourcerecordid>2336207497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-929e1c45553573065e9b9c0b0a78cea68f68afe5867bfcdca0a9b977113641b03</originalsourceid><addsrcrecordid>eNp1UEtPwzAMjhBIjMEP4FaJc8Fumke5oWk8pEkIAecqTZMtY2tG0h7492RaBQfEyZb9vWxCLhGuEVDcvKIoaVUgRQkgOaVHZLIf5VVR4PFPj_SUnMW4Bii5pGxCXmYrs3WxD1-Z6zKtQuO7PDi9ynbB9363UZ3pVdq2Ln7E22xurdF95u2IzZZBJWJrksSge-e7c3Ji1Saai7FOyfv9_G32mC-eH55md4tcFwz6lKUyqEvGGGWCAmemaioNDSghtVFcWi6VNUxy0VjdagUqAYRApLzEBuiUXB10U9DPIfnXaz-ELlnWBaW8AFFWIqHwgNLBxxiMrXfBbdNBNUK9_1z953OJQ0eO2jbBtUvzK_0_6xvdEG_a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336207497</pqid></control><display><type>article</type><title>Chemistry in carbon-rich protoplanetary disks: Effect of carbon grain destruction</title><source>Cambridge University Press Journals Complete</source><creator>Wei, Chen-En ; Nomura, Hideko ; Lee, Jeong-Eun ; Ip, Wing-Huen ; Walsh, Catherine ; Millar, T. J.</creator><creatorcontrib>Wei, Chen-En ; Nomura, Hideko ; Lee, Jeong-Eun ; Ip, Wing-Huen ; Walsh, Catherine ; Millar, T. J.</creatorcontrib><description>The Earth is dramatically carbon poor comparing to the interstellar medium and the proto-sun. The carbon to silicon ratios in inner solar system objects show a correlation with heliocentric distance, which suggests that the destruction of carbon grains has occurred before planet formation. To examine this hypothesis, we perform model calculations using a chemical reaction network under the physical conditions typical of protoplanetary disks. Our results show that, when carbonaceous grains are destroyed and converted into the gas phase and the gas becomes carbon-rich, the abundances of carbon-bearing species such as HCN and carbon-chain molecules, increase dramatically near the midplane, while oxygen-bearing species such as H2O and CO2 are depleted. The carbon to silicon ratios obtained by our model calculations qualitatively reproduce the observed gradient with disk radius, but there are some quantitative discrepancies from the observed values of the solar system objects. We adopted the model of a disk around a Herbig Ae star and performed line radiative transfer calculations to examine the effect of carbon grain destruction through observations with ALMA. The results indicate that HCN, H13 CN and c-C3 H2 may be good tracers of this process.</description><identifier>ISSN: 1743-9213</identifier><identifier>EISSN: 1743-9221</identifier><identifier>DOI: 10.1017/S1743921318008633</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Astronomy ; Carbon ; Carbon dioxide ; Chemical reactions ; Contributed Papers ; Destruction ; Inner solar system ; Interstellar matter ; Mathematical models ; Organic chemistry ; Planet formation ; Protoplanets ; Radiative transfer ; Silicon ; Solar system ; Tracers ; Vapor phases</subject><ispartof>Proceedings of the International Astronomical Union, 2018-08, Vol.14 (S345), p.289-290</ispartof><rights>International Astronomical Union 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-929e1c45553573065e9b9c0b0a78cea68f68afe5867bfcdca0a9b977113641b03</cites><orcidid>0000-0002-2944-4794 ; 0000-0001-6078-786X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1743921318008633/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Wei, Chen-En</creatorcontrib><creatorcontrib>Nomura, Hideko</creatorcontrib><creatorcontrib>Lee, Jeong-Eun</creatorcontrib><creatorcontrib>Ip, Wing-Huen</creatorcontrib><creatorcontrib>Walsh, Catherine</creatorcontrib><creatorcontrib>Millar, T. J.</creatorcontrib><title>Chemistry in carbon-rich protoplanetary disks: Effect of carbon grain destruction</title><title>Proceedings of the International Astronomical Union</title><addtitle>Proc. IAU</addtitle><description>The Earth is dramatically carbon poor comparing to the interstellar medium and the proto-sun. The carbon to silicon ratios in inner solar system objects show a correlation with heliocentric distance, which suggests that the destruction of carbon grains has occurred before planet formation. To examine this hypothesis, we perform model calculations using a chemical reaction network under the physical conditions typical of protoplanetary disks. Our results show that, when carbonaceous grains are destroyed and converted into the gas phase and the gas becomes carbon-rich, the abundances of carbon-bearing species such as HCN and carbon-chain molecules, increase dramatically near the midplane, while oxygen-bearing species such as H2O and CO2 are depleted. The carbon to silicon ratios obtained by our model calculations qualitatively reproduce the observed gradient with disk radius, but there are some quantitative discrepancies from the observed values of the solar system objects. We adopted the model of a disk around a Herbig Ae star and performed line radiative transfer calculations to examine the effect of carbon grain destruction through observations with ALMA. The results indicate that HCN, H13 CN and c-C3 H2 may be good tracers of this process.</description><subject>Astronomy</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Chemical reactions</subject><subject>Contributed Papers</subject><subject>Destruction</subject><subject>Inner solar system</subject><subject>Interstellar matter</subject><subject>Mathematical models</subject><subject>Organic chemistry</subject><subject>Planet formation</subject><subject>Protoplanets</subject><subject>Radiative transfer</subject><subject>Silicon</subject><subject>Solar system</subject><subject>Tracers</subject><subject>Vapor phases</subject><issn>1743-9213</issn><issn>1743-9221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UEtPwzAMjhBIjMEP4FaJc8Fumke5oWk8pEkIAecqTZMtY2tG0h7492RaBQfEyZb9vWxCLhGuEVDcvKIoaVUgRQkgOaVHZLIf5VVR4PFPj_SUnMW4Bii5pGxCXmYrs3WxD1-Z6zKtQuO7PDi9ynbB9363UZ3pVdq2Ln7E22xurdF95u2IzZZBJWJrksSge-e7c3Ji1Saai7FOyfv9_G32mC-eH55md4tcFwz6lKUyqEvGGGWCAmemaioNDSghtVFcWi6VNUxy0VjdagUqAYRApLzEBuiUXB10U9DPIfnXaz-ELlnWBaW8AFFWIqHwgNLBxxiMrXfBbdNBNUK9_1z953OJQ0eO2jbBtUvzK_0_6xvdEG_a</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Wei, Chen-En</creator><creator>Nomura, Hideko</creator><creator>Lee, Jeong-Eun</creator><creator>Ip, Wing-Huen</creator><creator>Walsh, Catherine</creator><creator>Millar, T. J.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2944-4794</orcidid><orcidid>https://orcid.org/0000-0001-6078-786X</orcidid></search><sort><creationdate>201808</creationdate><title>Chemistry in carbon-rich protoplanetary disks: Effect of carbon grain destruction</title><author>Wei, Chen-En ; Nomura, Hideko ; Lee, Jeong-Eun ; Ip, Wing-Huen ; Walsh, Catherine ; Millar, T. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-929e1c45553573065e9b9c0b0a78cea68f68afe5867bfcdca0a9b977113641b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astronomy</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Chemical reactions</topic><topic>Contributed Papers</topic><topic>Destruction</topic><topic>Inner solar system</topic><topic>Interstellar matter</topic><topic>Mathematical models</topic><topic>Organic chemistry</topic><topic>Planet formation</topic><topic>Protoplanets</topic><topic>Radiative transfer</topic><topic>Silicon</topic><topic>Solar system</topic><topic>Tracers</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Chen-En</creatorcontrib><creatorcontrib>Nomura, Hideko</creatorcontrib><creatorcontrib>Lee, Jeong-Eun</creatorcontrib><creatorcontrib>Ip, Wing-Huen</creatorcontrib><creatorcontrib>Walsh, Catherine</creatorcontrib><creatorcontrib>Millar, T. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the International Astronomical Union</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Chen-En</au><au>Nomura, Hideko</au><au>Lee, Jeong-Eun</au><au>Ip, Wing-Huen</au><au>Walsh, Catherine</au><au>Millar, T. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemistry in carbon-rich protoplanetary disks: Effect of carbon grain destruction</atitle><jtitle>Proceedings of the International Astronomical Union</jtitle><addtitle>Proc. IAU</addtitle><date>2018-08</date><risdate>2018</risdate><volume>14</volume><issue>S345</issue><spage>289</spage><epage>290</epage><pages>289-290</pages><issn>1743-9213</issn><eissn>1743-9221</eissn><abstract>The Earth is dramatically carbon poor comparing to the interstellar medium and the proto-sun. The carbon to silicon ratios in inner solar system objects show a correlation with heliocentric distance, which suggests that the destruction of carbon grains has occurred before planet formation. To examine this hypothesis, we perform model calculations using a chemical reaction network under the physical conditions typical of protoplanetary disks. Our results show that, when carbonaceous grains are destroyed and converted into the gas phase and the gas becomes carbon-rich, the abundances of carbon-bearing species such as HCN and carbon-chain molecules, increase dramatically near the midplane, while oxygen-bearing species such as H2O and CO2 are depleted. The carbon to silicon ratios obtained by our model calculations qualitatively reproduce the observed gradient with disk radius, but there are some quantitative discrepancies from the observed values of the solar system objects. We adopted the model of a disk around a Herbig Ae star and performed line radiative transfer calculations to examine the effect of carbon grain destruction through observations with ALMA. The results indicate that HCN, H13 CN and c-C3 H2 may be good tracers of this process.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1743921318008633</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-2944-4794</orcidid><orcidid>https://orcid.org/0000-0001-6078-786X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1743-9213
ispartof Proceedings of the International Astronomical Union, 2018-08, Vol.14 (S345), p.289-290
issn 1743-9213
1743-9221
language eng
recordid cdi_proquest_journals_2336207497
source Cambridge University Press Journals Complete
subjects Astronomy
Carbon
Carbon dioxide
Chemical reactions
Contributed Papers
Destruction
Inner solar system
Interstellar matter
Mathematical models
Organic chemistry
Planet formation
Protoplanets
Radiative transfer
Silicon
Solar system
Tracers
Vapor phases
title Chemistry in carbon-rich protoplanetary disks: Effect of carbon grain destruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemistry%20in%20carbon-rich%20protoplanetary%20disks:%20Effect%20of%20carbon%20grain%20destruction&rft.jtitle=Proceedings%20of%20the%20International%20Astronomical%20Union&rft.au=Wei,%20Chen-En&rft.date=2018-08&rft.volume=14&rft.issue=S345&rft.spage=289&rft.epage=290&rft.pages=289-290&rft.issn=1743-9213&rft.eissn=1743-9221&rft_id=info:doi/10.1017/S1743921318008633&rft_dat=%3Cproquest_cross%3E2336207497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2336207497&rft_id=info:pmid/&rft_cupid=10_1017_S1743921318008633&rfr_iscdi=true