Time-Frequency Linearization of Reactive Cortical Responses for the Early Detection of Balance Losses
Aiming at finding a fast and accurate preimpact fall detection (PIFD) strategy, this paper proposes a novel methodology that precociously discriminates the occurrence of unexpected loss of balance from the steady walking, by analyzing the subject’s cortical signal modifications (at the scalp level)...
Gespeichert in:
Veröffentlicht in: | Journal of sensors 2020, Vol.2019 (2019), p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 2019 |
container_start_page | 1 |
container_title | Journal of sensors |
container_volume | 2019 |
creator | Mezzina, Giovanni De Venuto, Daniela |
description | Aiming at finding a fast and accurate preimpact fall detection (PIFD) strategy, this paper proposes a novel methodology that precociously discriminates the occurrence of unexpected loss of balance from the steady walking, by analyzing the subject’s cortical signal modifications (at the scalp level) in the time-frequency domain. In this study, the subjects were asked to walk at their preferred speed on the treadmill platform programmed to provide unexpected bilateral slippages. The proposed PIFD method exploits synchronously recorded electromyographic (EMG: 2 channels from the same lower limb muscle bundle, bilaterally) and electro-encephalographic (EEG: 13 channels from motor, sensory-motor and parietal cortex areas) signals. To validate the method offline, also, the lower limb kinematics has been reconstructed via a motion capture system (23 reflective markers and 8 fixed cameras). During the PIFD system functioning, the EMG signals from the lateral gastrocnemii are first translated in a binary waveform and then used to trigger the EEG analysis. Once enabled via EMG (every gait cycle), the EEG computation branch extracts and linearizes the rate of variation in the EEG power spectrum density (PSD) for five bands of interests: θ (4–7 Hz), α (8–12 Hz), β I, β II, β III rhythms (13–15 Hz, 16–20 Hz, and 21–28 Hz). The slope of the linearized trend identifies, in this context, the cortical responsiveness parameter. Experimental results from six subjects revealed that the proposed system can distinguish the loss of balance with an overall accuracy of ~96% (average value between sensitivity and specificity). The discrimination process requests, on average, 370.6 ms. This value could be considered suitable for the implementation of countermeasures aimed at restoring the balance of the subject. |
doi_str_mv | 10.1155/2019/9570748 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2336161114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336161114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-4cfccdb67cf57ac406cf65bc5b82e0e5b0e7f2b9f0ab8d1b3f8800d63e0224b13</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AgCs7pzbMEPGpd0rRJdtS5qVAQZIK3kqQvLKNrZ9Ip89Ob0alHT3mEX957-SN0TskNpXk-Sgkdj8a5ICKTB2hAuRSJSLk8_K3zt2N0EsKSEM4EYwMEc7eCZObhfQON2eLCNaC8-1KdaxvcWvwCynTuA_Ck9Z0zqo43Yd02AQK2rcfdAvBU-XqL76ED8_PsTtWqMYCLNkR5io6sqgOc7c8hep1N55PHpHh-eJrcFonJJOmSzFhjKs2FsblQJiPcWJ5rk2uZAoFcExA21WNLlJYV1cxKSUjFGZA0zTRlQ3TZ9137Nn4odOWy3fgmjixTxjjllNIsquteGR-382DLtXcr5bclJeUuyHIXZLkPMvKrni9cU6lP95--6DVEA1b9aTqmUgr2DR58fdE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336161114</pqid></control><display><type>article</type><title>Time-Frequency Linearization of Reactive Cortical Responses for the Early Detection of Balance Losses</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Mezzina, Giovanni ; De Venuto, Daniela</creator><contributor>Mostafa, Hassan</contributor><creatorcontrib>Mezzina, Giovanni ; De Venuto, Daniela ; Mostafa, Hassan</creatorcontrib><description>Aiming at finding a fast and accurate preimpact fall detection (PIFD) strategy, this paper proposes a novel methodology that precociously discriminates the occurrence of unexpected loss of balance from the steady walking, by analyzing the subject’s cortical signal modifications (at the scalp level) in the time-frequency domain. In this study, the subjects were asked to walk at their preferred speed on the treadmill platform programmed to provide unexpected bilateral slippages. The proposed PIFD method exploits synchronously recorded electromyographic (EMG: 2 channels from the same lower limb muscle bundle, bilaterally) and electro-encephalographic (EEG: 13 channels from motor, sensory-motor and parietal cortex areas) signals. To validate the method offline, also, the lower limb kinematics has been reconstructed via a motion capture system (23 reflective markers and 8 fixed cameras). During the PIFD system functioning, the EMG signals from the lateral gastrocnemii are first translated in a binary waveform and then used to trigger the EEG analysis. Once enabled via EMG (every gait cycle), the EEG computation branch extracts and linearizes the rate of variation in the EEG power spectrum density (PSD) for five bands of interests: θ (4–7 Hz), α (8–12 Hz), β I, β II, β III rhythms (13–15 Hz, 16–20 Hz, and 21–28 Hz). The slope of the linearized trend identifies, in this context, the cortical responsiveness parameter. Experimental results from six subjects revealed that the proposed system can distinguish the loss of balance with an overall accuracy of ~96% (average value between sensitivity and specificity). The discrimination process requests, on average, 370.6 ms. This value could be considered suitable for the implementation of countermeasures aimed at restoring the balance of the subject.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2019/9570748</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Algorithms ; Channels ; Classification ; Electroencephalography ; Falls ; Gait ; Injuries ; Kinematics ; Linearization ; Machine learning ; Motion capture ; Muscles ; Parameter identification ; Sensors ; Support vector machines ; Treadmills ; Velocity ; Walking ; Waveforms</subject><ispartof>Journal of sensors, 2020, Vol.2019 (2019), p.1-14</ispartof><rights>Copyright © 2019 Giovanni Mezzina and Daniela De Venuto.</rights><rights>Copyright © 2019 Giovanni Mezzina and Daniela De Venuto. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-4cfccdb67cf57ac406cf65bc5b82e0e5b0e7f2b9f0ab8d1b3f8800d63e0224b13</citedby><cites>FETCH-LOGICAL-c480t-4cfccdb67cf57ac406cf65bc5b82e0e5b0e7f2b9f0ab8d1b3f8800d63e0224b13</cites><orcidid>0000-0003-4563-7614 ; 0000-0003-3927-8686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Mostafa, Hassan</contributor><creatorcontrib>Mezzina, Giovanni</creatorcontrib><creatorcontrib>De Venuto, Daniela</creatorcontrib><title>Time-Frequency Linearization of Reactive Cortical Responses for the Early Detection of Balance Losses</title><title>Journal of sensors</title><description>Aiming at finding a fast and accurate preimpact fall detection (PIFD) strategy, this paper proposes a novel methodology that precociously discriminates the occurrence of unexpected loss of balance from the steady walking, by analyzing the subject’s cortical signal modifications (at the scalp level) in the time-frequency domain. In this study, the subjects were asked to walk at their preferred speed on the treadmill platform programmed to provide unexpected bilateral slippages. The proposed PIFD method exploits synchronously recorded electromyographic (EMG: 2 channels from the same lower limb muscle bundle, bilaterally) and electro-encephalographic (EEG: 13 channels from motor, sensory-motor and parietal cortex areas) signals. To validate the method offline, also, the lower limb kinematics has been reconstructed via a motion capture system (23 reflective markers and 8 fixed cameras). During the PIFD system functioning, the EMG signals from the lateral gastrocnemii are first translated in a binary waveform and then used to trigger the EEG analysis. Once enabled via EMG (every gait cycle), the EEG computation branch extracts and linearizes the rate of variation in the EEG power spectrum density (PSD) for five bands of interests: θ (4–7 Hz), α (8–12 Hz), β I, β II, β III rhythms (13–15 Hz, 16–20 Hz, and 21–28 Hz). The slope of the linearized trend identifies, in this context, the cortical responsiveness parameter. Experimental results from six subjects revealed that the proposed system can distinguish the loss of balance with an overall accuracy of ~96% (average value between sensitivity and specificity). The discrimination process requests, on average, 370.6 ms. This value could be considered suitable for the implementation of countermeasures aimed at restoring the balance of the subject.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Channels</subject><subject>Classification</subject><subject>Electroencephalography</subject><subject>Falls</subject><subject>Gait</subject><subject>Injuries</subject><subject>Kinematics</subject><subject>Linearization</subject><subject>Machine learning</subject><subject>Motion capture</subject><subject>Muscles</subject><subject>Parameter identification</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>Treadmills</subject><subject>Velocity</subject><subject>Walking</subject><subject>Waveforms</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0EFLwzAUB_AgCs7pzbMEPGpd0rRJdtS5qVAQZIK3kqQvLKNrZ9Ip89Ob0alHT3mEX957-SN0TskNpXk-Sgkdj8a5ICKTB2hAuRSJSLk8_K3zt2N0EsKSEM4EYwMEc7eCZObhfQON2eLCNaC8-1KdaxvcWvwCynTuA_Ck9Z0zqo43Yd02AQK2rcfdAvBU-XqL76ED8_PsTtWqMYCLNkR5io6sqgOc7c8hep1N55PHpHh-eJrcFonJJOmSzFhjKs2FsblQJiPcWJ5rk2uZAoFcExA21WNLlJYV1cxKSUjFGZA0zTRlQ3TZ9137Nn4odOWy3fgmjixTxjjllNIsquteGR-382DLtXcr5bclJeUuyHIXZLkPMvKrni9cU6lP95--6DVEA1b9aTqmUgr2DR58fdE</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Mezzina, Giovanni</creator><creator>De Venuto, Daniela</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4563-7614</orcidid><orcidid>https://orcid.org/0000-0003-3927-8686</orcidid></search><sort><creationdate>2020</creationdate><title>Time-Frequency Linearization of Reactive Cortical Responses for the Early Detection of Balance Losses</title><author>Mezzina, Giovanni ; De Venuto, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-4cfccdb67cf57ac406cf65bc5b82e0e5b0e7f2b9f0ab8d1b3f8800d63e0224b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Channels</topic><topic>Classification</topic><topic>Electroencephalography</topic><topic>Falls</topic><topic>Gait</topic><topic>Injuries</topic><topic>Kinematics</topic><topic>Linearization</topic><topic>Machine learning</topic><topic>Motion capture</topic><topic>Muscles</topic><topic>Parameter identification</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>Treadmills</topic><topic>Velocity</topic><topic>Walking</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mezzina, Giovanni</creatorcontrib><creatorcontrib>De Venuto, Daniela</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mezzina, Giovanni</au><au>De Venuto, Daniela</au><au>Mostafa, Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Frequency Linearization of Reactive Cortical Responses for the Early Detection of Balance Losses</atitle><jtitle>Journal of sensors</jtitle><date>2020</date><risdate>2020</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>Aiming at finding a fast and accurate preimpact fall detection (PIFD) strategy, this paper proposes a novel methodology that precociously discriminates the occurrence of unexpected loss of balance from the steady walking, by analyzing the subject’s cortical signal modifications (at the scalp level) in the time-frequency domain. In this study, the subjects were asked to walk at their preferred speed on the treadmill platform programmed to provide unexpected bilateral slippages. The proposed PIFD method exploits synchronously recorded electromyographic (EMG: 2 channels from the same lower limb muscle bundle, bilaterally) and electro-encephalographic (EEG: 13 channels from motor, sensory-motor and parietal cortex areas) signals. To validate the method offline, also, the lower limb kinematics has been reconstructed via a motion capture system (23 reflective markers and 8 fixed cameras). During the PIFD system functioning, the EMG signals from the lateral gastrocnemii are first translated in a binary waveform and then used to trigger the EEG analysis. Once enabled via EMG (every gait cycle), the EEG computation branch extracts and linearizes the rate of variation in the EEG power spectrum density (PSD) for five bands of interests: θ (4–7 Hz), α (8–12 Hz), β I, β II, β III rhythms (13–15 Hz, 16–20 Hz, and 21–28 Hz). The slope of the linearized trend identifies, in this context, the cortical responsiveness parameter. Experimental results from six subjects revealed that the proposed system can distinguish the loss of balance with an overall accuracy of ~96% (average value between sensitivity and specificity). The discrimination process requests, on average, 370.6 ms. This value could be considered suitable for the implementation of countermeasures aimed at restoring the balance of the subject.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/9570748</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4563-7614</orcidid><orcidid>https://orcid.org/0000-0003-3927-8686</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-725X |
ispartof | Journal of sensors, 2020, Vol.2019 (2019), p.1-14 |
issn | 1687-725X 1687-7268 |
language | eng |
recordid | cdi_proquest_journals_2336161114 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Accuracy Algorithms Channels Classification Electroencephalography Falls Gait Injuries Kinematics Linearization Machine learning Motion capture Muscles Parameter identification Sensors Support vector machines Treadmills Velocity Walking Waveforms |
title | Time-Frequency Linearization of Reactive Cortical Responses for the Early Detection of Balance Losses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Frequency%20Linearization%20of%20Reactive%20Cortical%20Responses%20for%20the%20Early%20Detection%20of%20Balance%20Losses&rft.jtitle=Journal%20of%20sensors&rft.au=Mezzina,%20Giovanni&rft.date=2020&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2019/9570748&rft_dat=%3Cproquest_cross%3E2336161114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2336161114&rft_id=info:pmid/&rfr_iscdi=true |