Noncoaxiality between Two Tensors with Application to Stress Rate Decomposition and Fabric Anisotropy Variable

AbstractThe coaxial and totally noncoaxial parts of a tensor in regard to another reference tensor are derived in closed analytical form based on representation theorems of tensor-valued isotropic functions. In the process a new interpretation is obtained for a singular case of representation theore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mechanics 2020-03, Vol.146 (3)
Hauptverfasser: Li, X. S, Dafalias, Y. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of engineering mechanics
container_volume 146
creator Li, X. S
Dafalias, Y. F
description AbstractThe coaxial and totally noncoaxial parts of a tensor in regard to another reference tensor are derived in closed analytical form based on representation theorems of tensor-valued isotropic functions. In the process a new interpretation is obtained for a singular case of representation theorems. As a first application, the coaxial and noncoaxial parts of a stress rate tensor in regard to the stress tensor are analytically expressed, and the findings applied to the following two cases: analytically express the part of a stress rate tensor that induces change of stress principal axes at fixed principal stress values, and change of stress principal values at fixed stress principal axes such that the stress orbit on the stress π-plane is circular. A second application refers to enhancing the definition of the fabric anisotropy variable A, a quantity of cardinal importance for anisotropic critical state theory in granular mechanics, so that the orthogonal coaxial and noncoaxial parts of the fabric tensor in regard to the plastic strain rate direction participate in the definition of A.
doi_str_mv 10.1061/(ASCE)EM.1943-7889.0001730
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2335355022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335355022</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-e3b5686ac3fe095b37c040d8d5c2bfc94c7822e2b35ea3732fa7bd98923c48683</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwDxZsYJHiePIyu6qkgNSCRAtby3Ec4SqNg-2q9O9JKI8Vq5Fm7rkjHYTOQzIKSRJeX44Xk_wqn49CFkGQZhkbEULCFMgBGvzuDtGApAABA8aO0Ylzqy4TJSwZoObRNNKIDy1q7Xe4UH6rVIOXW4OXqnHGOrzV_g2P27bWUnhtGuwNXnirnMPPwit8q6RZt8bpr6NoSjwVhdUSjxvtjLem3eFXYbUoanWKjipRO3X2PYfoZZovJ_fB7OnuYTKeBQIg9YGCIk6yREioFGFxAakkESmzMpa0qCSLZJpRqmgBsRKQAq1EWpQsYxRklCUZDNHFvre15n2jnOcrs7FN95JTgBjimFDapW72KWmNc1ZVvLV6LeyOh4T3fjnv_fJ8znuXvHfJv_12cLKHhZPqr_6H_B_8BNlggME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335355022</pqid></control><display><type>article</type><title>Noncoaxiality between Two Tensors with Application to Stress Rate Decomposition and Fabric Anisotropy Variable</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Li, X. S ; Dafalias, Y. F</creator><creatorcontrib>Li, X. S ; Dafalias, Y. F</creatorcontrib><description>AbstractThe coaxial and totally noncoaxial parts of a tensor in regard to another reference tensor are derived in closed analytical form based on representation theorems of tensor-valued isotropic functions. In the process a new interpretation is obtained for a singular case of representation theorems. As a first application, the coaxial and noncoaxial parts of a stress rate tensor in regard to the stress tensor are analytically expressed, and the findings applied to the following two cases: analytically express the part of a stress rate tensor that induces change of stress principal axes at fixed principal stress values, and change of stress principal values at fixed stress principal axes such that the stress orbit on the stress π-plane is circular. A second application refers to enhancing the definition of the fabric anisotropy variable A, a quantity of cardinal importance for anisotropic critical state theory in granular mechanics, so that the orthogonal coaxial and noncoaxial parts of the fabric tensor in regard to the plastic strain rate direction participate in the definition of A.</description><identifier>ISSN: 0733-9399</identifier><identifier>EISSN: 1943-7889</identifier><identifier>DOI: 10.1061/(ASCE)EM.1943-7889.0001730</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Anisotropy ; Axes (reference lines) ; Mathematical analysis ; Plastic deformation ; Representations ; Strain rate ; Technical Papers ; Tensors ; Theorems</subject><ispartof>Journal of engineering mechanics, 2020-03, Vol.146 (3)</ispartof><rights>2020 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-e3b5686ac3fe095b37c040d8d5c2bfc94c7822e2b35ea3732fa7bd98923c48683</citedby><cites>FETCH-LOGICAL-a337t-e3b5686ac3fe095b37c040d8d5c2bfc94c7822e2b35ea3732fa7bd98923c48683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)EM.1943-7889.0001730$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)EM.1943-7889.0001730$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,75964,75972</link.rule.ids></links><search><creatorcontrib>Li, X. S</creatorcontrib><creatorcontrib>Dafalias, Y. F</creatorcontrib><title>Noncoaxiality between Two Tensors with Application to Stress Rate Decomposition and Fabric Anisotropy Variable</title><title>Journal of engineering mechanics</title><description>AbstractThe coaxial and totally noncoaxial parts of a tensor in regard to another reference tensor are derived in closed analytical form based on representation theorems of tensor-valued isotropic functions. In the process a new interpretation is obtained for a singular case of representation theorems. As a first application, the coaxial and noncoaxial parts of a stress rate tensor in regard to the stress tensor are analytically expressed, and the findings applied to the following two cases: analytically express the part of a stress rate tensor that induces change of stress principal axes at fixed principal stress values, and change of stress principal values at fixed stress principal axes such that the stress orbit on the stress π-plane is circular. A second application refers to enhancing the definition of the fabric anisotropy variable A, a quantity of cardinal importance for anisotropic critical state theory in granular mechanics, so that the orthogonal coaxial and noncoaxial parts of the fabric tensor in regard to the plastic strain rate direction participate in the definition of A.</description><subject>Anisotropy</subject><subject>Axes (reference lines)</subject><subject>Mathematical analysis</subject><subject>Plastic deformation</subject><subject>Representations</subject><subject>Strain rate</subject><subject>Technical Papers</subject><subject>Tensors</subject><subject>Theorems</subject><issn>0733-9399</issn><issn>1943-7889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwDxZsYJHiePIyu6qkgNSCRAtby3Ec4SqNg-2q9O9JKI8Vq5Fm7rkjHYTOQzIKSRJeX44Xk_wqn49CFkGQZhkbEULCFMgBGvzuDtGApAABA8aO0Ylzqy4TJSwZoObRNNKIDy1q7Xe4UH6rVIOXW4OXqnHGOrzV_g2P27bWUnhtGuwNXnirnMPPwit8q6RZt8bpr6NoSjwVhdUSjxvtjLem3eFXYbUoanWKjipRO3X2PYfoZZovJ_fB7OnuYTKeBQIg9YGCIk6yREioFGFxAakkESmzMpa0qCSLZJpRqmgBsRKQAq1EWpQsYxRklCUZDNHFvre15n2jnOcrs7FN95JTgBjimFDapW72KWmNc1ZVvLV6LeyOh4T3fjnv_fJ8znuXvHfJv_12cLKHhZPqr_6H_B_8BNlggME</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Li, X. S</creator><creator>Dafalias, Y. F</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20200301</creationdate><title>Noncoaxiality between Two Tensors with Application to Stress Rate Decomposition and Fabric Anisotropy Variable</title><author>Li, X. S ; Dafalias, Y. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-e3b5686ac3fe095b37c040d8d5c2bfc94c7822e2b35ea3732fa7bd98923c48683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Axes (reference lines)</topic><topic>Mathematical analysis</topic><topic>Plastic deformation</topic><topic>Representations</topic><topic>Strain rate</topic><topic>Technical Papers</topic><topic>Tensors</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, X. S</creatorcontrib><creatorcontrib>Dafalias, Y. F</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of engineering mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, X. S</au><au>Dafalias, Y. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncoaxiality between Two Tensors with Application to Stress Rate Decomposition and Fabric Anisotropy Variable</atitle><jtitle>Journal of engineering mechanics</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>146</volume><issue>3</issue><issn>0733-9399</issn><eissn>1943-7889</eissn><abstract>AbstractThe coaxial and totally noncoaxial parts of a tensor in regard to another reference tensor are derived in closed analytical form based on representation theorems of tensor-valued isotropic functions. In the process a new interpretation is obtained for a singular case of representation theorems. As a first application, the coaxial and noncoaxial parts of a stress rate tensor in regard to the stress tensor are analytically expressed, and the findings applied to the following two cases: analytically express the part of a stress rate tensor that induces change of stress principal axes at fixed principal stress values, and change of stress principal values at fixed stress principal axes such that the stress orbit on the stress π-plane is circular. A second application refers to enhancing the definition of the fabric anisotropy variable A, a quantity of cardinal importance for anisotropic critical state theory in granular mechanics, so that the orthogonal coaxial and noncoaxial parts of the fabric tensor in regard to the plastic strain rate direction participate in the definition of A.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)EM.1943-7889.0001730</doi></addata></record>
fulltext fulltext
identifier ISSN: 0733-9399
ispartof Journal of engineering mechanics, 2020-03, Vol.146 (3)
issn 0733-9399
1943-7889
language eng
recordid cdi_proquest_journals_2335355022
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Anisotropy
Axes (reference lines)
Mathematical analysis
Plastic deformation
Representations
Strain rate
Technical Papers
Tensors
Theorems
title Noncoaxiality between Two Tensors with Application to Stress Rate Decomposition and Fabric Anisotropy Variable
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncoaxiality%20between%20Two%20Tensors%20with%20Application%20to%20Stress%20Rate%20Decomposition%20and%20Fabric%20Anisotropy%20Variable&rft.jtitle=Journal%20of%20engineering%20mechanics&rft.au=Li,%20X.%20S&rft.date=2020-03-01&rft.volume=146&rft.issue=3&rft.issn=0733-9399&rft.eissn=1943-7889&rft_id=info:doi/10.1061/(ASCE)EM.1943-7889.0001730&rft_dat=%3Cproquest_cross%3E2335355022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335355022&rft_id=info:pmid/&rfr_iscdi=true