Identification of nozzle parameters in 3S device using artificial intelligence and meta-heuristic optimization scheme

The supersonic separator is a device used to separate the unwanted components in a natural gas. The separated components are drained through the condensate drain which is placed before the normal shockwave in the convergent divergent nozzle. In this work, optimal area ratio and operating pressure ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Venkata Ramana, P. Gangadhar, Prabhu, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2204
creator Venkata Ramana, P. Gangadhar
Prabhu, L.
description The supersonic separator is a device used to separate the unwanted components in a natural gas. The separated components are drained through the condensate drain which is placed before the normal shockwave in the convergent divergent nozzle. In this work, optimal area ratio and operating pressure ratio of the nozzle are obtained to develop the shock at a specific location with an acceptable pressure recovery coefficient. Here, the non-conventional optimization scheme genetic algorithm is employed to identify the optimal parameters. Further, the mathematical modelling is replaced by a neural network in the optimization scheme to reduce the computational cost. The complete work is carried out in the Matlab platform. The optimal parameters obtained using neural network are well in agreement with the mathematical model and the computational cost is drastically reduced.
doi_str_mv 10.1063/1.5141567
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2335339665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335339665</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-cd02d2e7ee61a6024364ffad389a833d4fdc7c9eb88b17e251e6ca7241c352ae3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWKsL_0HAnTA1j0kys5Tio1BwoYK7IU3utCkzmTHJFOyvd7QFd67u4pzv3MO9CF1TMqNE8js6EzSnQqoTNKFC0ExJKk_RhJAyz1jOP87RRYxbQlipVDFBw8KCT652RifXedzV2Hf7fQO410G3kCBE7Dzmr9jCzhnAQ3R-jXX4hZxuRjVB07g1-FHV3uKR0tkGhuBicgZ3fXKt2x_yo9lAC5forNZNhKvjnKL3x4e3-XO2fHlazO-XWU9lkTJjCbMMFICkWpKxvszrWltelLrg3Oa1NcqUsCqKFVXABAVptGI5NVwwDXyKbg65feg-B4ip2nZD8OPKinEuOC-lFKPr9uCKxqXfmlUfXKvDV7XrQkWr40mr3tb_mSmpfn7wB_Bv6_57PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2335339665</pqid></control><display><type>conference_proceeding</type><title>Identification of nozzle parameters in 3S device using artificial intelligence and meta-heuristic optimization scheme</title><source>AIP Journals Complete</source><creator>Venkata Ramana, P. Gangadhar ; Prabhu, L.</creator><contributor>Reddy, Krishna R. ; Mahesh, Vinyas ; Loja, M. A. R.</contributor><creatorcontrib>Venkata Ramana, P. Gangadhar ; Prabhu, L. ; Reddy, Krishna R. ; Mahesh, Vinyas ; Loja, M. A. R.</creatorcontrib><description>The supersonic separator is a device used to separate the unwanted components in a natural gas. The separated components are drained through the condensate drain which is placed before the normal shockwave in the convergent divergent nozzle. In this work, optimal area ratio and operating pressure ratio of the nozzle are obtained to develop the shock at a specific location with an acceptable pressure recovery coefficient. Here, the non-conventional optimization scheme genetic algorithm is employed to identify the optimal parameters. Further, the mathematical modelling is replaced by a neural network in the optimization scheme to reduce the computational cost. The complete work is carried out in the Matlab platform. The optimal parameters obtained using neural network are well in agreement with the mathematical model and the computational cost is drastically reduced.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5141567</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial intelligence ; Computational efficiency ; Computing costs ; Divergent nozzles ; Genetic algorithms ; Heuristic methods ; Mathematical models ; Natural gas ; Neural networks ; Optimization ; Parameter identification ; Pressure ratio ; Pressure recovery ; Separators</subject><ispartof>AIP conference proceedings, 2020, Vol.2204 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5141567$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Reddy, Krishna R.</contributor><contributor>Mahesh, Vinyas</contributor><contributor>Loja, M. A. R.</contributor><creatorcontrib>Venkata Ramana, P. Gangadhar</creatorcontrib><creatorcontrib>Prabhu, L.</creatorcontrib><title>Identification of nozzle parameters in 3S device using artificial intelligence and meta-heuristic optimization scheme</title><title>AIP conference proceedings</title><description>The supersonic separator is a device used to separate the unwanted components in a natural gas. The separated components are drained through the condensate drain which is placed before the normal shockwave in the convergent divergent nozzle. In this work, optimal area ratio and operating pressure ratio of the nozzle are obtained to develop the shock at a specific location with an acceptable pressure recovery coefficient. Here, the non-conventional optimization scheme genetic algorithm is employed to identify the optimal parameters. Further, the mathematical modelling is replaced by a neural network in the optimization scheme to reduce the computational cost. The complete work is carried out in the Matlab platform. The optimal parameters obtained using neural network are well in agreement with the mathematical model and the computational cost is drastically reduced.</description><subject>Artificial intelligence</subject><subject>Computational efficiency</subject><subject>Computing costs</subject><subject>Divergent nozzles</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Mathematical models</subject><subject>Natural gas</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Pressure ratio</subject><subject>Pressure recovery</subject><subject>Separators</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kUtLAzEUhYMoWKsL_0HAnTA1j0kys5Tio1BwoYK7IU3utCkzmTHJFOyvd7QFd67u4pzv3MO9CF1TMqNE8js6EzSnQqoTNKFC0ExJKk_RhJAyz1jOP87RRYxbQlipVDFBw8KCT652RifXedzV2Hf7fQO410G3kCBE7Dzmr9jCzhnAQ3R-jXX4hZxuRjVB07g1-FHV3uKR0tkGhuBicgZ3fXKt2x_yo9lAC5forNZNhKvjnKL3x4e3-XO2fHlazO-XWU9lkTJjCbMMFICkWpKxvszrWltelLrg3Oa1NcqUsCqKFVXABAVptGI5NVwwDXyKbg65feg-B4ip2nZD8OPKinEuOC-lFKPr9uCKxqXfmlUfXKvDV7XrQkWr40mr3tb_mSmpfn7wB_Bv6_57PA</recordid><startdate>20200110</startdate><enddate>20200110</enddate><creator>Venkata Ramana, P. Gangadhar</creator><creator>Prabhu, L.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200110</creationdate><title>Identification of nozzle parameters in 3S device using artificial intelligence and meta-heuristic optimization scheme</title><author>Venkata Ramana, P. Gangadhar ; Prabhu, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-cd02d2e7ee61a6024364ffad389a833d4fdc7c9eb88b17e251e6ca7241c352ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Computational efficiency</topic><topic>Computing costs</topic><topic>Divergent nozzles</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Mathematical models</topic><topic>Natural gas</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Pressure ratio</topic><topic>Pressure recovery</topic><topic>Separators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkata Ramana, P. Gangadhar</creatorcontrib><creatorcontrib>Prabhu, L.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkata Ramana, P. Gangadhar</au><au>Prabhu, L.</au><au>Reddy, Krishna R.</au><au>Mahesh, Vinyas</au><au>Loja, M. A. R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identification of nozzle parameters in 3S device using artificial intelligence and meta-heuristic optimization scheme</atitle><btitle>AIP conference proceedings</btitle><date>2020-01-10</date><risdate>2020</risdate><volume>2204</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The supersonic separator is a device used to separate the unwanted components in a natural gas. The separated components are drained through the condensate drain which is placed before the normal shockwave in the convergent divergent nozzle. In this work, optimal area ratio and operating pressure ratio of the nozzle are obtained to develop the shock at a specific location with an acceptable pressure recovery coefficient. Here, the non-conventional optimization scheme genetic algorithm is employed to identify the optimal parameters. Further, the mathematical modelling is replaced by a neural network in the optimization scheme to reduce the computational cost. The complete work is carried out in the Matlab platform. The optimal parameters obtained using neural network are well in agreement with the mathematical model and the computational cost is drastically reduced.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5141567</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2020, Vol.2204 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2335339665
source AIP Journals Complete
subjects Artificial intelligence
Computational efficiency
Computing costs
Divergent nozzles
Genetic algorithms
Heuristic methods
Mathematical models
Natural gas
Neural networks
Optimization
Parameter identification
Pressure ratio
Pressure recovery
Separators
title Identification of nozzle parameters in 3S device using artificial intelligence and meta-heuristic optimization scheme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identification%20of%20nozzle%20parameters%20in%203S%20device%20using%20artificial%20intelligence%20and%20meta-heuristic%20optimization%20scheme&rft.btitle=AIP%20conference%20proceedings&rft.au=Venkata%20Ramana,%20P.%20Gangadhar&rft.date=2020-01-10&rft.volume=2204&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5141567&rft_dat=%3Cproquest_scita%3E2335339665%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335339665&rft_id=info:pmid/&rfr_iscdi=true