Overexpression of the yap1, PDE2, and STB3 genes enhances the tolerance of yeast to oxidative stress induced by 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine

Abstract 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine (CTBT) is an antifungal agent that induces oxidative stress and enhances the activity of other antifungals with different modes of action. A genome-wide screening of Saccharomyces cerevisiae genomic library in the high-copy-number plasmid reveale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS yeast research 2012-12, Vol.12 (8), p.958-968
Hauptverfasser: Drobna, Eva, Gazdag, Zoltan, Culakova, Hana, Dzugasova, Vladimira, Gbelska, Yvetta, Pesti, Miklos, Subik, Julius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 968
container_issue 8
container_start_page 958
container_title FEMS yeast research
container_volume 12
creator Drobna, Eva
Gazdag, Zoltan
Culakova, Hana
Dzugasova, Vladimira
Gbelska, Yvetta
Pesti, Miklos
Subik, Julius
description Abstract 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine (CTBT) is an antifungal agent that induces oxidative stress and enhances the activity of other antifungals with different modes of action. A genome-wide screening of Saccharomyces cerevisiae genomic library in the high-copy-number plasmid revealed three genes, yap1, PDE2, and STB3, which increased the CTBT tolerance of the parental strain. The yap1 gene is known to activate many genes in response to oxidants. The PDE2 and STB3 genes encode the high-affinity cAMP phosphodiesterase and the transcription factor recognizing the ribosomal RNA processing element in promoter sequences, respectively. The protective effects of their overexpression against CTBT toxicity was observed in the absence of certain proteins involved in stress responses, cell wall integrity signaling, and chromatin remodeling. The enhanced CTBT tolerance of the yap1, PDE2. and STB3 transformants was a consequence of their high antioxidant enzyme activities at the beginning of CTBT treatment in comparison with that of the parental strain, for that they inactivated the CTBT-induced reactive oxygen species. These results point to the complex interplay among the oxidant sensing, cAMP-protein kinase A signaling, and transcription reprogramming of yeast cells, leading to their better adaptation to the stress imposed by CTBT.
doi_str_mv 10.1111/j.1567-1364.2012.00845.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2334745229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1567-1364.2012.00845.x</oup_id><sourcerecordid>2334745229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4405-9bb95b81ab88e77c9bff58d6b1a1a8af8d22528393f39208368cbf12b845f2523</originalsourceid><addsrcrecordid>eNqNUctu1DAUtRCIPuAXkCW2SfAjD0diA6UFpEqtoCxQVVl2csNklNrBdtrJfAsfi8O0s0FIeON7fc851zoHIUxJRuN5s85oUVYp5WWeMUJZRojIi2zzBB3uB0_3dVEeoCPv14TQKgKfowPGalJTzg_Rr4s7cLAZHXjfW4Nth8MK8KxGmuDLD6cswcq0-OvVe45_gAGPwayUaWKx4IIdwC3tQpxB-RCfsN30rQr9HWAfFmHcm3ZqoMV6xlXarAbrbIDg1NYO9rpIaNrcaDBbe00TluQ3wfVq2xt4gZ51avDw8uE-Rt_OTq9OPqXnFx8_n7w7T5s8J0Vaa10XWlClhYCqamrddYVoS00VVUJ1omWsYILXvOM1I4KXotEdZTp61sUJP0avd7qjsz8n8EGu7eRMXCkZ53mVF9GwiBI7VOOs9w46Obr-VrlZUiKXWORaLo7LxX25xCL_xCI3kfrqYcGkb6HdEx9ziIC3O8B9P8D838Ly7PuXWEQ639HtNP6DnP79q986vqow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334745229</pqid></control><display><type>article</type><title>Overexpression of the yap1, PDE2, and STB3 genes enhances the tolerance of yeast to oxidative stress induced by 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford Journals Open Access Collection</source><source>Alma/SFX Local Collection</source><creator>Drobna, Eva ; Gazdag, Zoltan ; Culakova, Hana ; Dzugasova, Vladimira ; Gbelska, Yvetta ; Pesti, Miklos ; Subik, Julius</creator><creatorcontrib>Drobna, Eva ; Gazdag, Zoltan ; Culakova, Hana ; Dzugasova, Vladimira ; Gbelska, Yvetta ; Pesti, Miklos ; Subik, Julius</creatorcontrib><description>Abstract 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine (CTBT) is an antifungal agent that induces oxidative stress and enhances the activity of other antifungals with different modes of action. A genome-wide screening of Saccharomyces cerevisiae genomic library in the high-copy-number plasmid revealed three genes, yap1, PDE2, and STB3, which increased the CTBT tolerance of the parental strain. The yap1 gene is known to activate many genes in response to oxidants. The PDE2 and STB3 genes encode the high-affinity cAMP phosphodiesterase and the transcription factor recognizing the ribosomal RNA processing element in promoter sequences, respectively. The protective effects of their overexpression against CTBT toxicity was observed in the absence of certain proteins involved in stress responses, cell wall integrity signaling, and chromatin remodeling. The enhanced CTBT tolerance of the yap1, PDE2. and STB3 transformants was a consequence of their high antioxidant enzyme activities at the beginning of CTBT treatment in comparison with that of the parental strain, for that they inactivated the CTBT-induced reactive oxygen species. These results point to the complex interplay among the oxidant sensing, cAMP-protein kinase A signaling, and transcription reprogramming of yeast cells, leading to their better adaptation to the stress imposed by CTBT.</description><identifier>ISSN: 1567-1356</identifier><identifier>EISSN: 1567-1364</identifier><identifier>DOI: 10.1111/j.1567-1364.2012.00845.x</identifier><identifier>PMID: 22909133</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Antifungal Agents - pharmacology ; Antioxidants ; Cell walls ; Cellular Reprogramming ; Cellular stress response ; Chromatin remodeling ; Cyclic AMP ; deletion mutants ; DNA, Fungal - genetics ; Drug Tolerance ; Enzymatic activity ; Gene Expression Regulation, Fungal - drug effects ; Genomes ; Kinases ; Oligonucleotide Array Sequence Analysis ; overexpressed genes ; Oxidants ; Oxidative stress ; Oxidative Stress - drug effects ; Phosphodiesterase ; Protein kinase A ; Reactive Oxygen Species ; resistance ; RNA processing ; rRNA ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Analysis, DNA ; Signal Transduction ; superoxide ; susceptibility ; Toxicity ; Trans-Activators - genetics ; Trans-Activators - metabolism ; transcription ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Triazine ; Triazines - pharmacology</subject><ispartof>FEMS yeast research, 2012-12, Vol.12 (8), p.958-968</ispartof><rights>Copyright © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved 2012</rights><rights>2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><rights>2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.</rights><rights>Copyright © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4405-9bb95b81ab88e77c9bff58d6b1a1a8af8d22528393f39208368cbf12b845f2523</citedby><cites>FETCH-LOGICAL-c4405-9bb95b81ab88e77c9bff58d6b1a1a8af8d22528393f39208368cbf12b845f2523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1567-1364.2012.00845.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1567-1364.2012.00845.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22909133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drobna, Eva</creatorcontrib><creatorcontrib>Gazdag, Zoltan</creatorcontrib><creatorcontrib>Culakova, Hana</creatorcontrib><creatorcontrib>Dzugasova, Vladimira</creatorcontrib><creatorcontrib>Gbelska, Yvetta</creatorcontrib><creatorcontrib>Pesti, Miklos</creatorcontrib><creatorcontrib>Subik, Julius</creatorcontrib><title>Overexpression of the yap1, PDE2, and STB3 genes enhances the tolerance of yeast to oxidative stress induced by 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine</title><title>FEMS yeast research</title><addtitle>FEMS Yeast Res</addtitle><description>Abstract 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine (CTBT) is an antifungal agent that induces oxidative stress and enhances the activity of other antifungals with different modes of action. A genome-wide screening of Saccharomyces cerevisiae genomic library in the high-copy-number plasmid revealed three genes, yap1, PDE2, and STB3, which increased the CTBT tolerance of the parental strain. The yap1 gene is known to activate many genes in response to oxidants. The PDE2 and STB3 genes encode the high-affinity cAMP phosphodiesterase and the transcription factor recognizing the ribosomal RNA processing element in promoter sequences, respectively. The protective effects of their overexpression against CTBT toxicity was observed in the absence of certain proteins involved in stress responses, cell wall integrity signaling, and chromatin remodeling. The enhanced CTBT tolerance of the yap1, PDE2. and STB3 transformants was a consequence of their high antioxidant enzyme activities at the beginning of CTBT treatment in comparison with that of the parental strain, for that they inactivated the CTBT-induced reactive oxygen species. These results point to the complex interplay among the oxidant sensing, cAMP-protein kinase A signaling, and transcription reprogramming of yeast cells, leading to their better adaptation to the stress imposed by CTBT.</description><subject>Antifungal Agents - pharmacology</subject><subject>Antioxidants</subject><subject>Cell walls</subject><subject>Cellular Reprogramming</subject><subject>Cellular stress response</subject><subject>Chromatin remodeling</subject><subject>Cyclic AMP</subject><subject>deletion mutants</subject><subject>DNA, Fungal - genetics</subject><subject>Drug Tolerance</subject><subject>Enzymatic activity</subject><subject>Gene Expression Regulation, Fungal - drug effects</subject><subject>Genomes</subject><subject>Kinases</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>overexpressed genes</subject><subject>Oxidants</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Phosphodiesterase</subject><subject>Protein kinase A</subject><subject>Reactive Oxygen Species</subject><subject>resistance</subject><subject>RNA processing</subject><subject>rRNA</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Analysis, DNA</subject><subject>Signal Transduction</subject><subject>superoxide</subject><subject>susceptibility</subject><subject>Toxicity</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>transcription</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Triazine</subject><subject>Triazines - pharmacology</subject><issn>1567-1356</issn><issn>1567-1364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNUctu1DAUtRCIPuAXkCW2SfAjD0diA6UFpEqtoCxQVVl2csNklNrBdtrJfAsfi8O0s0FIeON7fc851zoHIUxJRuN5s85oUVYp5WWeMUJZRojIi2zzBB3uB0_3dVEeoCPv14TQKgKfowPGalJTzg_Rr4s7cLAZHXjfW4Nth8MK8KxGmuDLD6cswcq0-OvVe45_gAGPwayUaWKx4IIdwC3tQpxB-RCfsN30rQr9HWAfFmHcm3ZqoMV6xlXarAbrbIDg1NYO9rpIaNrcaDBbe00TluQ3wfVq2xt4gZ51avDw8uE-Rt_OTq9OPqXnFx8_n7w7T5s8J0Vaa10XWlClhYCqamrddYVoS00VVUJ1omWsYILXvOM1I4KXotEdZTp61sUJP0avd7qjsz8n8EGu7eRMXCkZ53mVF9GwiBI7VOOs9w46Obr-VrlZUiKXWORaLo7LxX25xCL_xCI3kfrqYcGkb6HdEx9ziIC3O8B9P8D838Ly7PuXWEQ639HtNP6DnP79q986vqow</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Drobna, Eva</creator><creator>Gazdag, Zoltan</creator><creator>Culakova, Hana</creator><creator>Dzugasova, Vladimira</creator><creator>Gbelska, Yvetta</creator><creator>Pesti, Miklos</creator><creator>Subik, Julius</creator><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20121201</creationdate><title>Overexpression of the yap1, PDE2, and STB3 genes enhances the tolerance of yeast to oxidative stress induced by 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine</title><author>Drobna, Eva ; Gazdag, Zoltan ; Culakova, Hana ; Dzugasova, Vladimira ; Gbelska, Yvetta ; Pesti, Miklos ; Subik, Julius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4405-9bb95b81ab88e77c9bff58d6b1a1a8af8d22528393f39208368cbf12b845f2523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Antifungal Agents - pharmacology</topic><topic>Antioxidants</topic><topic>Cell walls</topic><topic>Cellular Reprogramming</topic><topic>Cellular stress response</topic><topic>Chromatin remodeling</topic><topic>Cyclic AMP</topic><topic>deletion mutants</topic><topic>DNA, Fungal - genetics</topic><topic>Drug Tolerance</topic><topic>Enzymatic activity</topic><topic>Gene Expression Regulation, Fungal - drug effects</topic><topic>Genomes</topic><topic>Kinases</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>overexpressed genes</topic><topic>Oxidants</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Phosphodiesterase</topic><topic>Protein kinase A</topic><topic>Reactive Oxygen Species</topic><topic>resistance</topic><topic>RNA processing</topic><topic>rRNA</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Analysis, DNA</topic><topic>Signal Transduction</topic><topic>superoxide</topic><topic>susceptibility</topic><topic>Toxicity</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>transcription</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Triazine</topic><topic>Triazines - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drobna, Eva</creatorcontrib><creatorcontrib>Gazdag, Zoltan</creatorcontrib><creatorcontrib>Culakova, Hana</creatorcontrib><creatorcontrib>Dzugasova, Vladimira</creatorcontrib><creatorcontrib>Gbelska, Yvetta</creatorcontrib><creatorcontrib>Pesti, Miklos</creatorcontrib><creatorcontrib>Subik, Julius</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>FEMS yeast research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drobna, Eva</au><au>Gazdag, Zoltan</au><au>Culakova, Hana</au><au>Dzugasova, Vladimira</au><au>Gbelska, Yvetta</au><au>Pesti, Miklos</au><au>Subik, Julius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of the yap1, PDE2, and STB3 genes enhances the tolerance of yeast to oxidative stress induced by 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine</atitle><jtitle>FEMS yeast research</jtitle><addtitle>FEMS Yeast Res</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>12</volume><issue>8</issue><spage>958</spage><epage>968</epage><pages>958-968</pages><issn>1567-1356</issn><eissn>1567-1364</eissn><abstract>Abstract 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine (CTBT) is an antifungal agent that induces oxidative stress and enhances the activity of other antifungals with different modes of action. A genome-wide screening of Saccharomyces cerevisiae genomic library in the high-copy-number plasmid revealed three genes, yap1, PDE2, and STB3, which increased the CTBT tolerance of the parental strain. The yap1 gene is known to activate many genes in response to oxidants. The PDE2 and STB3 genes encode the high-affinity cAMP phosphodiesterase and the transcription factor recognizing the ribosomal RNA processing element in promoter sequences, respectively. The protective effects of their overexpression against CTBT toxicity was observed in the absence of certain proteins involved in stress responses, cell wall integrity signaling, and chromatin remodeling. The enhanced CTBT tolerance of the yap1, PDE2. and STB3 transformants was a consequence of their high antioxidant enzyme activities at the beginning of CTBT treatment in comparison with that of the parental strain, for that they inactivated the CTBT-induced reactive oxygen species. These results point to the complex interplay among the oxidant sensing, cAMP-protein kinase A signaling, and transcription reprogramming of yeast cells, leading to their better adaptation to the stress imposed by CTBT.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22909133</pmid><doi>10.1111/j.1567-1364.2012.00845.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1567-1356
ispartof FEMS yeast research, 2012-12, Vol.12 (8), p.958-968
issn 1567-1356
1567-1364
language eng
recordid cdi_proquest_journals_2334745229
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Oxford Journals Open Access Collection; Alma/SFX Local Collection
subjects Antifungal Agents - pharmacology
Antioxidants
Cell walls
Cellular Reprogramming
Cellular stress response
Chromatin remodeling
Cyclic AMP
deletion mutants
DNA, Fungal - genetics
Drug Tolerance
Enzymatic activity
Gene Expression Regulation, Fungal - drug effects
Genomes
Kinases
Oligonucleotide Array Sequence Analysis
overexpressed genes
Oxidants
Oxidative stress
Oxidative Stress - drug effects
Phosphodiesterase
Protein kinase A
Reactive Oxygen Species
resistance
RNA processing
rRNA
Saccharomyces cerevisiae
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sequence Analysis, DNA
Signal Transduction
superoxide
susceptibility
Toxicity
Trans-Activators - genetics
Trans-Activators - metabolism
transcription
Transcription Factors - genetics
Transcription Factors - metabolism
Triazine
Triazines - pharmacology
title Overexpression of the yap1, PDE2, and STB3 genes enhances the tolerance of yeast to oxidative stress induced by 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20the%20yap1,%20PDE2,%20and%20STB3%20genes%20enhances%20the%20tolerance%20of%20yeast%20to%20oxidative%20stress%20induced%20by%207-chlorotetrazolo%5B5,1-c%5Dbenzo%5B1,2,4%5Dtriazine&rft.jtitle=FEMS%20yeast%20research&rft.au=Drobna,%20Eva&rft.date=2012-12-01&rft.volume=12&rft.issue=8&rft.spage=958&rft.epage=968&rft.pages=958-968&rft.issn=1567-1356&rft.eissn=1567-1364&rft_id=info:doi/10.1111/j.1567-1364.2012.00845.x&rft_dat=%3Cproquest_cross%3E2334745229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334745229&rft_id=info:pmid/22909133&rft_oup_id=10.1111/j.1567-1364.2012.00845.x&rfr_iscdi=true