Single breath‐hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized 129Xe MR

Pulmonary diseases usually result in changes of the blood‐gas exchange function in the early stages. Gas exchange across the respiratory membrane and gas diffusion in the alveoli can be quantified using hyperpolarized 129Xe MR via chemical shift saturation recovery (CSSR) and diffusion‐weighted imag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NMR in biomedicine 2019-05, Vol.32 (5), p.n/a
Hauptverfasser: Xie, Junshuai, Li, Haidong, Zhang, Huiting, Zhao, Xiuchao, Shi, Lei, Zhang, Ming, Xiao, Sa, Deng, He, Wang, Ke, Yang, Hao, Sun, Xianping, Wu, Guangyao, Ye, Chaohui, Zhou, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title NMR in biomedicine
container_volume 32
creator Xie, Junshuai
Li, Haidong
Zhang, Huiting
Zhao, Xiuchao
Shi, Lei
Zhang, Ming
Xiao, Sa
Deng, He
Wang, Ke
Yang, Hao
Sun, Xianping
Wu, Guangyao
Ye, Chaohui
Zhou, Xin
description Pulmonary diseases usually result in changes of the blood‐gas exchange function in the early stages. Gas exchange across the respiratory membrane and gas diffusion in the alveoli can be quantified using hyperpolarized 129Xe MR via chemical shift saturation recovery (CSSR) and diffusion‐weighted imaging (DWI), respectively. Generally, CSSR and DWI data have been collected in separate breaths in humans. Unfortunately, the lung inflation level cannot be the exactly same in different breaths, which causes fluctuations in blood‐gas exchange and pulmonary microstructure. Here we combine CSSR and DWI obtained with compressed sensing, to evaluate the gas diffusion and exchange function within a single breath‐hold in humans. A new parameter, namely the perfusion factor of the respiratory membrane (SVRd/g), is proposed to evaluate the gas exchange function. Hyperpolarized 129Xe MR data are compared with pulmonary function tests and computed tomography examinations in healthy young, age‐matched control, and chronic obstructive pulmonary disease human cohorts. SVRd/g decreases as the ventilation impairment and emphysema index increase. Our results indicate that the proposed method has the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice. Gas exchange and diffusion information of the lung was obtained within a single breath‐hold in humans. The perfusion factor of the respiratory membrane (SVRd/g) decreased as the ventilation impairment and emphysema index increased. In vivo experimental results indicated the proposed method had the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.
doi_str_mv 10.1002/nbm.4068
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2334615630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334615630</sourcerecordid><originalsourceid>FETCH-LOGICAL-p668-48ec0a9800f39495308ba6d6b62566638cfd5cab4bda7ac56cbc67526d6f4d143</originalsourceid><addsrcrecordid>eNotkEtOwzAARC0EEqUgcQRLrFP8i2svoeIntSBBF-wsJ3YaV4kd7EalrDgCZ-QkpCqr2TzNaB4AlxhNMELk2hfthCEujsAIIykzzCQ5BiMkc5JRJtApOEtpjRASjJIRCG_OrxoLi2j1pv79_qlDY2Brdeqjba3fwFDBrm_a4HXcwZVO0H6WtfYrC7U30Liq6pMLHjoP677VPsGt29Sw3nU2dqHR0X1ZAzGR7xYuXs_BSaWbZC_-cwyW93fL2WM2f3l4mt3Ms45zkTFhS6SlQKiiksmcIlFobnjBSc45p6KsTF7qghVGT3WZ87Io-TQnA1Ixgxkdg6tDbRfDR2_TRq1DH_2wqAiljOOcUzRQ2YHausbuVBddO5xUGKm9SjWoVHuV6vl2sU_6B46Pak0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334615630</pqid></control><display><type>article</type><title>Single breath‐hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized 129Xe MR</title><source>Wiley Journals</source><creator>Xie, Junshuai ; Li, Haidong ; Zhang, Huiting ; Zhao, Xiuchao ; Shi, Lei ; Zhang, Ming ; Xiao, Sa ; Deng, He ; Wang, Ke ; Yang, Hao ; Sun, Xianping ; Wu, Guangyao ; Ye, Chaohui ; Zhou, Xin</creator><creatorcontrib>Xie, Junshuai ; Li, Haidong ; Zhang, Huiting ; Zhao, Xiuchao ; Shi, Lei ; Zhang, Ming ; Xiao, Sa ; Deng, He ; Wang, Ke ; Yang, Hao ; Sun, Xianping ; Wu, Guangyao ; Ye, Chaohui ; Zhou, Xin</creatorcontrib><description>Pulmonary diseases usually result in changes of the blood‐gas exchange function in the early stages. Gas exchange across the respiratory membrane and gas diffusion in the alveoli can be quantified using hyperpolarized 129Xe MR via chemical shift saturation recovery (CSSR) and diffusion‐weighted imaging (DWI), respectively. Generally, CSSR and DWI data have been collected in separate breaths in humans. Unfortunately, the lung inflation level cannot be the exactly same in different breaths, which causes fluctuations in blood‐gas exchange and pulmonary microstructure. Here we combine CSSR and DWI obtained with compressed sensing, to evaluate the gas diffusion and exchange function within a single breath‐hold in humans. A new parameter, namely the perfusion factor of the respiratory membrane (SVRd/g), is proposed to evaluate the gas exchange function. Hyperpolarized 129Xe MR data are compared with pulmonary function tests and computed tomography examinations in healthy young, age‐matched control, and chronic obstructive pulmonary disease human cohorts. SVRd/g decreases as the ventilation impairment and emphysema index increase. Our results indicate that the proposed method has the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice. Gas exchange and diffusion information of the lung was obtained within a single breath‐hold in humans. The perfusion factor of the respiratory membrane (SVRd/g) decreased as the ventilation impairment and emphysema index increased. In vivo experimental results indicated the proposed method had the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.</description><identifier>ISSN: 0952-3480</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.4068</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Alveoli ; Biological products ; Blood ; Chemical equilibrium ; Chronic obstructive pulmonary disease ; compressed sensing ; Computed tomography ; COPD ; Disease control ; Emphysema ; Evaluation ; Gas exchange ; Gaseous diffusion ; hyperpolarized 129Xe ; lung ; Lung diseases ; Lungs ; Mechanical ventilation ; Membranes ; Obstructive lung disease ; Organic chemistry ; Parenchyma ; Perfusion ; Pulmonary functions ; pulmonary microstructure ; Respiratory function ; Variation ; Ventilation ; Xenon 129</subject><ispartof>NMR in biomedicine, 2019-05, Vol.32 (5), p.n/a</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5580-7907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnbm.4068$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnbm.4068$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xie, Junshuai</creatorcontrib><creatorcontrib>Li, Haidong</creatorcontrib><creatorcontrib>Zhang, Huiting</creatorcontrib><creatorcontrib>Zhao, Xiuchao</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Xiao, Sa</creatorcontrib><creatorcontrib>Deng, He</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Sun, Xianping</creatorcontrib><creatorcontrib>Wu, Guangyao</creatorcontrib><creatorcontrib>Ye, Chaohui</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><title>Single breath‐hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized 129Xe MR</title><title>NMR in biomedicine</title><description>Pulmonary diseases usually result in changes of the blood‐gas exchange function in the early stages. Gas exchange across the respiratory membrane and gas diffusion in the alveoli can be quantified using hyperpolarized 129Xe MR via chemical shift saturation recovery (CSSR) and diffusion‐weighted imaging (DWI), respectively. Generally, CSSR and DWI data have been collected in separate breaths in humans. Unfortunately, the lung inflation level cannot be the exactly same in different breaths, which causes fluctuations in blood‐gas exchange and pulmonary microstructure. Here we combine CSSR and DWI obtained with compressed sensing, to evaluate the gas diffusion and exchange function within a single breath‐hold in humans. A new parameter, namely the perfusion factor of the respiratory membrane (SVRd/g), is proposed to evaluate the gas exchange function. Hyperpolarized 129Xe MR data are compared with pulmonary function tests and computed tomography examinations in healthy young, age‐matched control, and chronic obstructive pulmonary disease human cohorts. SVRd/g decreases as the ventilation impairment and emphysema index increase. Our results indicate that the proposed method has the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice. Gas exchange and diffusion information of the lung was obtained within a single breath‐hold in humans. The perfusion factor of the respiratory membrane (SVRd/g) decreased as the ventilation impairment and emphysema index increased. In vivo experimental results indicated the proposed method had the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.</description><subject>Alveoli</subject><subject>Biological products</subject><subject>Blood</subject><subject>Chemical equilibrium</subject><subject>Chronic obstructive pulmonary disease</subject><subject>compressed sensing</subject><subject>Computed tomography</subject><subject>COPD</subject><subject>Disease control</subject><subject>Emphysema</subject><subject>Evaluation</subject><subject>Gas exchange</subject><subject>Gaseous diffusion</subject><subject>hyperpolarized 129Xe</subject><subject>lung</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Mechanical ventilation</subject><subject>Membranes</subject><subject>Obstructive lung disease</subject><subject>Organic chemistry</subject><subject>Parenchyma</subject><subject>Perfusion</subject><subject>Pulmonary functions</subject><subject>pulmonary microstructure</subject><subject>Respiratory function</subject><subject>Variation</subject><subject>Ventilation</subject><subject>Xenon 129</subject><issn>0952-3480</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAARC0EEqUgcQRLrFP8i2svoeIntSBBF-wsJ3YaV4kd7EalrDgCZ-QkpCqr2TzNaB4AlxhNMELk2hfthCEujsAIIykzzCQ5BiMkc5JRJtApOEtpjRASjJIRCG_OrxoLi2j1pv79_qlDY2Brdeqjba3fwFDBrm_a4HXcwZVO0H6WtfYrC7U30Liq6pMLHjoP677VPsGt29Sw3nU2dqHR0X1ZAzGR7xYuXs_BSaWbZC_-cwyW93fL2WM2f3l4mt3Ms45zkTFhS6SlQKiiksmcIlFobnjBSc45p6KsTF7qghVGT3WZ87Io-TQnA1Ixgxkdg6tDbRfDR2_TRq1DH_2wqAiljOOcUzRQ2YHausbuVBddO5xUGKm9SjWoVHuV6vl2sU_6B46Pak0</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Xie, Junshuai</creator><creator>Li, Haidong</creator><creator>Zhang, Huiting</creator><creator>Zhao, Xiuchao</creator><creator>Shi, Lei</creator><creator>Zhang, Ming</creator><creator>Xiao, Sa</creator><creator>Deng, He</creator><creator>Wang, Ke</creator><creator>Yang, Hao</creator><creator>Sun, Xianping</creator><creator>Wu, Guangyao</creator><creator>Ye, Chaohui</creator><creator>Zhou, Xin</creator><general>Wiley Subscription Services, Inc</general><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-5580-7907</orcidid></search><sort><creationdate>201905</creationdate><title>Single breath‐hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized 129Xe MR</title><author>Xie, Junshuai ; Li, Haidong ; Zhang, Huiting ; Zhao, Xiuchao ; Shi, Lei ; Zhang, Ming ; Xiao, Sa ; Deng, He ; Wang, Ke ; Yang, Hao ; Sun, Xianping ; Wu, Guangyao ; Ye, Chaohui ; Zhou, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p668-48ec0a9800f39495308ba6d6b62566638cfd5cab4bda7ac56cbc67526d6f4d143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alveoli</topic><topic>Biological products</topic><topic>Blood</topic><topic>Chemical equilibrium</topic><topic>Chronic obstructive pulmonary disease</topic><topic>compressed sensing</topic><topic>Computed tomography</topic><topic>COPD</topic><topic>Disease control</topic><topic>Emphysema</topic><topic>Evaluation</topic><topic>Gas exchange</topic><topic>Gaseous diffusion</topic><topic>hyperpolarized 129Xe</topic><topic>lung</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Mechanical ventilation</topic><topic>Membranes</topic><topic>Obstructive lung disease</topic><topic>Organic chemistry</topic><topic>Parenchyma</topic><topic>Perfusion</topic><topic>Pulmonary functions</topic><topic>pulmonary microstructure</topic><topic>Respiratory function</topic><topic>Variation</topic><topic>Ventilation</topic><topic>Xenon 129</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Junshuai</creatorcontrib><creatorcontrib>Li, Haidong</creatorcontrib><creatorcontrib>Zhang, Huiting</creatorcontrib><creatorcontrib>Zhao, Xiuchao</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Xiao, Sa</creatorcontrib><creatorcontrib>Deng, He</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Sun, Xianping</creatorcontrib><creatorcontrib>Wu, Guangyao</creatorcontrib><creatorcontrib>Ye, Chaohui</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Junshuai</au><au>Li, Haidong</au><au>Zhang, Huiting</au><au>Zhao, Xiuchao</au><au>Shi, Lei</au><au>Zhang, Ming</au><au>Xiao, Sa</au><au>Deng, He</au><au>Wang, Ke</au><au>Yang, Hao</au><au>Sun, Xianping</au><au>Wu, Guangyao</au><au>Ye, Chaohui</au><au>Zhou, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single breath‐hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized 129Xe MR</atitle><jtitle>NMR in biomedicine</jtitle><date>2019-05</date><risdate>2019</risdate><volume>32</volume><issue>5</issue><epage>n/a</epage><issn>0952-3480</issn><eissn>1099-1492</eissn><abstract>Pulmonary diseases usually result in changes of the blood‐gas exchange function in the early stages. Gas exchange across the respiratory membrane and gas diffusion in the alveoli can be quantified using hyperpolarized 129Xe MR via chemical shift saturation recovery (CSSR) and diffusion‐weighted imaging (DWI), respectively. Generally, CSSR and DWI data have been collected in separate breaths in humans. Unfortunately, the lung inflation level cannot be the exactly same in different breaths, which causes fluctuations in blood‐gas exchange and pulmonary microstructure. Here we combine CSSR and DWI obtained with compressed sensing, to evaluate the gas diffusion and exchange function within a single breath‐hold in humans. A new parameter, namely the perfusion factor of the respiratory membrane (SVRd/g), is proposed to evaluate the gas exchange function. Hyperpolarized 129Xe MR data are compared with pulmonary function tests and computed tomography examinations in healthy young, age‐matched control, and chronic obstructive pulmonary disease human cohorts. SVRd/g decreases as the ventilation impairment and emphysema index increase. Our results indicate that the proposed method has the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice. Gas exchange and diffusion information of the lung was obtained within a single breath‐hold in humans. The perfusion factor of the respiratory membrane (SVRd/g) decreased as the ventilation impairment and emphysema index increased. In vivo experimental results indicated the proposed method had the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nbm.4068</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5580-7907</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0952-3480
ispartof NMR in biomedicine, 2019-05, Vol.32 (5), p.n/a
issn 0952-3480
1099-1492
language eng
recordid cdi_proquest_journals_2334615630
source Wiley Journals
subjects Alveoli
Biological products
Blood
Chemical equilibrium
Chronic obstructive pulmonary disease
compressed sensing
Computed tomography
COPD
Disease control
Emphysema
Evaluation
Gas exchange
Gaseous diffusion
hyperpolarized 129Xe
lung
Lung diseases
Lungs
Mechanical ventilation
Membranes
Obstructive lung disease
Organic chemistry
Parenchyma
Perfusion
Pulmonary functions
pulmonary microstructure
Respiratory function
Variation
Ventilation
Xenon 129
title Single breath‐hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized 129Xe MR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20breath%E2%80%90hold%20measurement%20of%20pulmonary%20gas%20exchange%20and%20diffusion%20in%20humans%20with%20hyperpolarized%20129Xe%20MR&rft.jtitle=NMR%20in%20biomedicine&rft.au=Xie,%20Junshuai&rft.date=2019-05&rft.volume=32&rft.issue=5&rft.epage=n/a&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.4068&rft_dat=%3Cproquest_wiley%3E2334615630%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334615630&rft_id=info:pmid/&rfr_iscdi=true