Single breath‐hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized 129Xe MR
Pulmonary diseases usually result in changes of the blood‐gas exchange function in the early stages. Gas exchange across the respiratory membrane and gas diffusion in the alveoli can be quantified using hyperpolarized 129Xe MR via chemical shift saturation recovery (CSSR) and diffusion‐weighted imag...
Gespeichert in:
Veröffentlicht in: | NMR in biomedicine 2019-05, Vol.32 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | NMR in biomedicine |
container_volume | 32 |
creator | Xie, Junshuai Li, Haidong Zhang, Huiting Zhao, Xiuchao Shi, Lei Zhang, Ming Xiao, Sa Deng, He Wang, Ke Yang, Hao Sun, Xianping Wu, Guangyao Ye, Chaohui Zhou, Xin |
description | Pulmonary diseases usually result in changes of the blood‐gas exchange function in the early stages. Gas exchange across the respiratory membrane and gas diffusion in the alveoli can be quantified using hyperpolarized 129Xe MR via chemical shift saturation recovery (CSSR) and diffusion‐weighted imaging (DWI), respectively. Generally, CSSR and DWI data have been collected in separate breaths in humans. Unfortunately, the lung inflation level cannot be the exactly same in different breaths, which causes fluctuations in blood‐gas exchange and pulmonary microstructure. Here we combine CSSR and DWI obtained with compressed sensing, to evaluate the gas diffusion and exchange function within a single breath‐hold in humans. A new parameter, namely the perfusion factor of the respiratory membrane (SVRd/g), is proposed to evaluate the gas exchange function. Hyperpolarized 129Xe MR data are compared with pulmonary function tests and computed tomography examinations in healthy young, age‐matched control, and chronic obstructive pulmonary disease human cohorts. SVRd/g decreases as the ventilation impairment and emphysema index increase. Our results indicate that the proposed method has the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.
Gas exchange and diffusion information of the lung was obtained within a single breath‐hold in humans. The perfusion factor of the respiratory membrane (SVRd/g) decreased as the ventilation impairment and emphysema index increased. In vivo experimental results indicated the proposed method had the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice. |
doi_str_mv | 10.1002/nbm.4068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2334615630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334615630</sourcerecordid><originalsourceid>FETCH-LOGICAL-p668-48ec0a9800f39495308ba6d6b62566638cfd5cab4bda7ac56cbc67526d6f4d143</originalsourceid><addsrcrecordid>eNotkEtOwzAARC0EEqUgcQRLrFP8i2svoeIntSBBF-wsJ3YaV4kd7EalrDgCZ-QkpCqr2TzNaB4AlxhNMELk2hfthCEujsAIIykzzCQ5BiMkc5JRJtApOEtpjRASjJIRCG_OrxoLi2j1pv79_qlDY2Brdeqjba3fwFDBrm_a4HXcwZVO0H6WtfYrC7U30Liq6pMLHjoP677VPsGt29Sw3nU2dqHR0X1ZAzGR7xYuXs_BSaWbZC_-cwyW93fL2WM2f3l4mt3Ms45zkTFhS6SlQKiiksmcIlFobnjBSc45p6KsTF7qghVGT3WZ87Io-TQnA1Ixgxkdg6tDbRfDR2_TRq1DH_2wqAiljOOcUzRQ2YHausbuVBddO5xUGKm9SjWoVHuV6vl2sU_6B46Pak0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334615630</pqid></control><display><type>article</type><title>Single breath‐hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized 129Xe MR</title><source>Wiley Journals</source><creator>Xie, Junshuai ; Li, Haidong ; Zhang, Huiting ; Zhao, Xiuchao ; Shi, Lei ; Zhang, Ming ; Xiao, Sa ; Deng, He ; Wang, Ke ; Yang, Hao ; Sun, Xianping ; Wu, Guangyao ; Ye, Chaohui ; Zhou, Xin</creator><creatorcontrib>Xie, Junshuai ; Li, Haidong ; Zhang, Huiting ; Zhao, Xiuchao ; Shi, Lei ; Zhang, Ming ; Xiao, Sa ; Deng, He ; Wang, Ke ; Yang, Hao ; Sun, Xianping ; Wu, Guangyao ; Ye, Chaohui ; Zhou, Xin</creatorcontrib><description>Pulmonary diseases usually result in changes of the blood‐gas exchange function in the early stages. Gas exchange across the respiratory membrane and gas diffusion in the alveoli can be quantified using hyperpolarized 129Xe MR via chemical shift saturation recovery (CSSR) and diffusion‐weighted imaging (DWI), respectively. Generally, CSSR and DWI data have been collected in separate breaths in humans. Unfortunately, the lung inflation level cannot be the exactly same in different breaths, which causes fluctuations in blood‐gas exchange and pulmonary microstructure. Here we combine CSSR and DWI obtained with compressed sensing, to evaluate the gas diffusion and exchange function within a single breath‐hold in humans. A new parameter, namely the perfusion factor of the respiratory membrane (SVRd/g), is proposed to evaluate the gas exchange function. Hyperpolarized 129Xe MR data are compared with pulmonary function tests and computed tomography examinations in healthy young, age‐matched control, and chronic obstructive pulmonary disease human cohorts. SVRd/g decreases as the ventilation impairment and emphysema index increase. Our results indicate that the proposed method has the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.
Gas exchange and diffusion information of the lung was obtained within a single breath‐hold in humans. The perfusion factor of the respiratory membrane (SVRd/g) decreased as the ventilation impairment and emphysema index increased. In vivo experimental results indicated the proposed method had the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.</description><identifier>ISSN: 0952-3480</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.4068</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Alveoli ; Biological products ; Blood ; Chemical equilibrium ; Chronic obstructive pulmonary disease ; compressed sensing ; Computed tomography ; COPD ; Disease control ; Emphysema ; Evaluation ; Gas exchange ; Gaseous diffusion ; hyperpolarized 129Xe ; lung ; Lung diseases ; Lungs ; Mechanical ventilation ; Membranes ; Obstructive lung disease ; Organic chemistry ; Parenchyma ; Perfusion ; Pulmonary functions ; pulmonary microstructure ; Respiratory function ; Variation ; Ventilation ; Xenon 129</subject><ispartof>NMR in biomedicine, 2019-05, Vol.32 (5), p.n/a</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5580-7907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnbm.4068$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnbm.4068$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xie, Junshuai</creatorcontrib><creatorcontrib>Li, Haidong</creatorcontrib><creatorcontrib>Zhang, Huiting</creatorcontrib><creatorcontrib>Zhao, Xiuchao</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Xiao, Sa</creatorcontrib><creatorcontrib>Deng, He</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Sun, Xianping</creatorcontrib><creatorcontrib>Wu, Guangyao</creatorcontrib><creatorcontrib>Ye, Chaohui</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><title>Single breath‐hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized 129Xe MR</title><title>NMR in biomedicine</title><description>Pulmonary diseases usually result in changes of the blood‐gas exchange function in the early stages. Gas exchange across the respiratory membrane and gas diffusion in the alveoli can be quantified using hyperpolarized 129Xe MR via chemical shift saturation recovery (CSSR) and diffusion‐weighted imaging (DWI), respectively. Generally, CSSR and DWI data have been collected in separate breaths in humans. Unfortunately, the lung inflation level cannot be the exactly same in different breaths, which causes fluctuations in blood‐gas exchange and pulmonary microstructure. Here we combine CSSR and DWI obtained with compressed sensing, to evaluate the gas diffusion and exchange function within a single breath‐hold in humans. A new parameter, namely the perfusion factor of the respiratory membrane (SVRd/g), is proposed to evaluate the gas exchange function. Hyperpolarized 129Xe MR data are compared with pulmonary function tests and computed tomography examinations in healthy young, age‐matched control, and chronic obstructive pulmonary disease human cohorts. SVRd/g decreases as the ventilation impairment and emphysema index increase. Our results indicate that the proposed method has the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.
Gas exchange and diffusion information of the lung was obtained within a single breath‐hold in humans. The perfusion factor of the respiratory membrane (SVRd/g) decreased as the ventilation impairment and emphysema index increased. In vivo experimental results indicated the proposed method had the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.</description><subject>Alveoli</subject><subject>Biological products</subject><subject>Blood</subject><subject>Chemical equilibrium</subject><subject>Chronic obstructive pulmonary disease</subject><subject>compressed sensing</subject><subject>Computed tomography</subject><subject>COPD</subject><subject>Disease control</subject><subject>Emphysema</subject><subject>Evaluation</subject><subject>Gas exchange</subject><subject>Gaseous diffusion</subject><subject>hyperpolarized 129Xe</subject><subject>lung</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Mechanical ventilation</subject><subject>Membranes</subject><subject>Obstructive lung disease</subject><subject>Organic chemistry</subject><subject>Parenchyma</subject><subject>Perfusion</subject><subject>Pulmonary functions</subject><subject>pulmonary microstructure</subject><subject>Respiratory function</subject><subject>Variation</subject><subject>Ventilation</subject><subject>Xenon 129</subject><issn>0952-3480</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAARC0EEqUgcQRLrFP8i2svoeIntSBBF-wsJ3YaV4kd7EalrDgCZ-QkpCqr2TzNaB4AlxhNMELk2hfthCEujsAIIykzzCQ5BiMkc5JRJtApOEtpjRASjJIRCG_OrxoLi2j1pv79_qlDY2Brdeqjba3fwFDBrm_a4HXcwZVO0H6WtfYrC7U30Liq6pMLHjoP677VPsGt29Sw3nU2dqHR0X1ZAzGR7xYuXs_BSaWbZC_-cwyW93fL2WM2f3l4mt3Ms45zkTFhS6SlQKiiksmcIlFobnjBSc45p6KsTF7qghVGT3WZ87Io-TQnA1Ixgxkdg6tDbRfDR2_TRq1DH_2wqAiljOOcUzRQ2YHausbuVBddO5xUGKm9SjWoVHuV6vl2sU_6B46Pak0</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Xie, Junshuai</creator><creator>Li, Haidong</creator><creator>Zhang, Huiting</creator><creator>Zhao, Xiuchao</creator><creator>Shi, Lei</creator><creator>Zhang, Ming</creator><creator>Xiao, Sa</creator><creator>Deng, He</creator><creator>Wang, Ke</creator><creator>Yang, Hao</creator><creator>Sun, Xianping</creator><creator>Wu, Guangyao</creator><creator>Ye, Chaohui</creator><creator>Zhou, Xin</creator><general>Wiley Subscription Services, Inc</general><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-5580-7907</orcidid></search><sort><creationdate>201905</creationdate><title>Single breath‐hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized 129Xe MR</title><author>Xie, Junshuai ; Li, Haidong ; Zhang, Huiting ; Zhao, Xiuchao ; Shi, Lei ; Zhang, Ming ; Xiao, Sa ; Deng, He ; Wang, Ke ; Yang, Hao ; Sun, Xianping ; Wu, Guangyao ; Ye, Chaohui ; Zhou, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p668-48ec0a9800f39495308ba6d6b62566638cfd5cab4bda7ac56cbc67526d6f4d143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alveoli</topic><topic>Biological products</topic><topic>Blood</topic><topic>Chemical equilibrium</topic><topic>Chronic obstructive pulmonary disease</topic><topic>compressed sensing</topic><topic>Computed tomography</topic><topic>COPD</topic><topic>Disease control</topic><topic>Emphysema</topic><topic>Evaluation</topic><topic>Gas exchange</topic><topic>Gaseous diffusion</topic><topic>hyperpolarized 129Xe</topic><topic>lung</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Mechanical ventilation</topic><topic>Membranes</topic><topic>Obstructive lung disease</topic><topic>Organic chemistry</topic><topic>Parenchyma</topic><topic>Perfusion</topic><topic>Pulmonary functions</topic><topic>pulmonary microstructure</topic><topic>Respiratory function</topic><topic>Variation</topic><topic>Ventilation</topic><topic>Xenon 129</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Junshuai</creatorcontrib><creatorcontrib>Li, Haidong</creatorcontrib><creatorcontrib>Zhang, Huiting</creatorcontrib><creatorcontrib>Zhao, Xiuchao</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Xiao, Sa</creatorcontrib><creatorcontrib>Deng, He</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Sun, Xianping</creatorcontrib><creatorcontrib>Wu, Guangyao</creatorcontrib><creatorcontrib>Ye, Chaohui</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Junshuai</au><au>Li, Haidong</au><au>Zhang, Huiting</au><au>Zhao, Xiuchao</au><au>Shi, Lei</au><au>Zhang, Ming</au><au>Xiao, Sa</au><au>Deng, He</au><au>Wang, Ke</au><au>Yang, Hao</au><au>Sun, Xianping</au><au>Wu, Guangyao</au><au>Ye, Chaohui</au><au>Zhou, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single breath‐hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized 129Xe MR</atitle><jtitle>NMR in biomedicine</jtitle><date>2019-05</date><risdate>2019</risdate><volume>32</volume><issue>5</issue><epage>n/a</epage><issn>0952-3480</issn><eissn>1099-1492</eissn><abstract>Pulmonary diseases usually result in changes of the blood‐gas exchange function in the early stages. Gas exchange across the respiratory membrane and gas diffusion in the alveoli can be quantified using hyperpolarized 129Xe MR via chemical shift saturation recovery (CSSR) and diffusion‐weighted imaging (DWI), respectively. Generally, CSSR and DWI data have been collected in separate breaths in humans. Unfortunately, the lung inflation level cannot be the exactly same in different breaths, which causes fluctuations in blood‐gas exchange and pulmonary microstructure. Here we combine CSSR and DWI obtained with compressed sensing, to evaluate the gas diffusion and exchange function within a single breath‐hold in humans. A new parameter, namely the perfusion factor of the respiratory membrane (SVRd/g), is proposed to evaluate the gas exchange function. Hyperpolarized 129Xe MR data are compared with pulmonary function tests and computed tomography examinations in healthy young, age‐matched control, and chronic obstructive pulmonary disease human cohorts. SVRd/g decreases as the ventilation impairment and emphysema index increase. Our results indicate that the proposed method has the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.
Gas exchange and diffusion information of the lung was obtained within a single breath‐hold in humans. The perfusion factor of the respiratory membrane (SVRd/g) decreased as the ventilation impairment and emphysema index increased. In vivo experimental results indicated the proposed method had the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nbm.4068</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5580-7907</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-3480 |
ispartof | NMR in biomedicine, 2019-05, Vol.32 (5), p.n/a |
issn | 0952-3480 1099-1492 |
language | eng |
recordid | cdi_proquest_journals_2334615630 |
source | Wiley Journals |
subjects | Alveoli Biological products Blood Chemical equilibrium Chronic obstructive pulmonary disease compressed sensing Computed tomography COPD Disease control Emphysema Evaluation Gas exchange Gaseous diffusion hyperpolarized 129Xe lung Lung diseases Lungs Mechanical ventilation Membranes Obstructive lung disease Organic chemistry Parenchyma Perfusion Pulmonary functions pulmonary microstructure Respiratory function Variation Ventilation Xenon 129 |
title | Single breath‐hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized 129Xe MR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20breath%E2%80%90hold%20measurement%20of%20pulmonary%20gas%20exchange%20and%20diffusion%20in%20humans%20with%20hyperpolarized%20129Xe%20MR&rft.jtitle=NMR%20in%20biomedicine&rft.au=Xie,%20Junshuai&rft.date=2019-05&rft.volume=32&rft.issue=5&rft.epage=n/a&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.4068&rft_dat=%3Cproquest_wiley%3E2334615630%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334615630&rft_id=info:pmid/&rfr_iscdi=true |