First-Order Algorithms for Constrained Nonlinear Dynamic Games
This paper presents algorithms for non-zero sum nonlinear constrained dynamic games with full information. Such problems emerge when multiple players with action constraints and differing objectives interact with the same dynamic system. They model a wide range of applications including economics, d...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bolei Di Lamperski, Andrew |
description | This paper presents algorithms for non-zero sum nonlinear constrained dynamic games with full information. Such problems emerge when multiple players with action constraints and differing objectives interact with the same dynamic system. They model a wide range of applications including economics, defense, and energy systems. We show how to exploit the temporal structure in projected gradient and Douglas-Rachford (DR) splitting methods. The resulting algorithms converge locally to open-loop Nash equilibria (OLNE) at linear rates. Furthermore, we extend stagewise Newton method to find a local feedback policy around an OLNE. In the of linear dynamics and polyhedral constraints, we show that this local feedback controller is an approximated feedback Nash equilibrium (FNE). Numerical examples are provided. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2334488044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334488044</sourcerecordid><originalsourceid>FETCH-proquest_journals_23344880443</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwc8ssKi7R9S9KSS1ScMxJzy_KLMnILVZIyy9ScM7PKy4pSszMS01R8MvPywEyEosUXCrzEnMzkxXcE3NTi3kYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKh7oCBMTCwsDExNj4lQBALIVODc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334488044</pqid></control><display><type>article</type><title>First-Order Algorithms for Constrained Nonlinear Dynamic Games</title><source>Free E- Journals</source><creator>Bolei Di ; Lamperski, Andrew</creator><creatorcontrib>Bolei Di ; Lamperski, Andrew</creatorcontrib><description>This paper presents algorithms for non-zero sum nonlinear constrained dynamic games with full information. Such problems emerge when multiple players with action constraints and differing objectives interact with the same dynamic system. They model a wide range of applications including economics, defense, and energy systems. We show how to exploit the temporal structure in projected gradient and Douglas-Rachford (DR) splitting methods. The resulting algorithms converge locally to open-loop Nash equilibria (OLNE) at linear rates. Furthermore, we extend stagewise Newton method to find a local feedback policy around an OLNE. In the of linear dynamics and polyhedral constraints, we show that this local feedback controller is an approximated feedback Nash equilibrium (FNE). Numerical examples are provided.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Constraints ; Direct reduction ; Dynamical systems ; Economic models ; Feedback control ; First order algorithms ; Games ; Newton methods ; Nonlinear dynamics</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Bolei Di</creatorcontrib><creatorcontrib>Lamperski, Andrew</creatorcontrib><title>First-Order Algorithms for Constrained Nonlinear Dynamic Games</title><title>arXiv.org</title><description>This paper presents algorithms for non-zero sum nonlinear constrained dynamic games with full information. Such problems emerge when multiple players with action constraints and differing objectives interact with the same dynamic system. They model a wide range of applications including economics, defense, and energy systems. We show how to exploit the temporal structure in projected gradient and Douglas-Rachford (DR) splitting methods. The resulting algorithms converge locally to open-loop Nash equilibria (OLNE) at linear rates. Furthermore, we extend stagewise Newton method to find a local feedback policy around an OLNE. In the of linear dynamics and polyhedral constraints, we show that this local feedback controller is an approximated feedback Nash equilibrium (FNE). Numerical examples are provided.</description><subject>Algorithms</subject><subject>Constraints</subject><subject>Direct reduction</subject><subject>Dynamical systems</subject><subject>Economic models</subject><subject>Feedback control</subject><subject>First order algorithms</subject><subject>Games</subject><subject>Newton methods</subject><subject>Nonlinear dynamics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwc8ssKi7R9S9KSS1ScMxJzy_KLMnILVZIyy9ScM7PKy4pSszMS01R8MvPywEyEosUXCrzEnMzkxXcE3NTi3kYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKh7oCBMTCwsDExNj4lQBALIVODc</recordid><startdate>20200107</startdate><enddate>20200107</enddate><creator>Bolei Di</creator><creator>Lamperski, Andrew</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200107</creationdate><title>First-Order Algorithms for Constrained Nonlinear Dynamic Games</title><author>Bolei Di ; Lamperski, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23344880443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Constraints</topic><topic>Direct reduction</topic><topic>Dynamical systems</topic><topic>Economic models</topic><topic>Feedback control</topic><topic>First order algorithms</topic><topic>Games</topic><topic>Newton methods</topic><topic>Nonlinear dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Bolei Di</creatorcontrib><creatorcontrib>Lamperski, Andrew</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolei Di</au><au>Lamperski, Andrew</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>First-Order Algorithms for Constrained Nonlinear Dynamic Games</atitle><jtitle>arXiv.org</jtitle><date>2020-01-07</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>This paper presents algorithms for non-zero sum nonlinear constrained dynamic games with full information. Such problems emerge when multiple players with action constraints and differing objectives interact with the same dynamic system. They model a wide range of applications including economics, defense, and energy systems. We show how to exploit the temporal structure in projected gradient and Douglas-Rachford (DR) splitting methods. The resulting algorithms converge locally to open-loop Nash equilibria (OLNE) at linear rates. Furthermore, we extend stagewise Newton method to find a local feedback policy around an OLNE. In the of linear dynamics and polyhedral constraints, we show that this local feedback controller is an approximated feedback Nash equilibrium (FNE). Numerical examples are provided.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2334488044 |
source | Free E- Journals |
subjects | Algorithms Constraints Direct reduction Dynamical systems Economic models Feedback control First order algorithms Games Newton methods Nonlinear dynamics |
title | First-Order Algorithms for Constrained Nonlinear Dynamic Games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=First-Order%20Algorithms%20for%20Constrained%20Nonlinear%20Dynamic%20Games&rft.jtitle=arXiv.org&rft.au=Bolei%20Di&rft.date=2020-01-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2334488044%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334488044&rft_id=info:pmid/&rfr_iscdi=true |