Bose-Einstein correlations for Lévy stable source distributions

The peak of the two-particle Bose-Einstein correlation functions has a very interesting structure. It is often believed to have a multivariate Gaussian form. We show here that for the class of stable distributions, characterized by the index of stability \(0 < \alpha \le 2\), the peak has a stret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2004-07, Vol.36 (1), p.67-78
Hauptverfasser: Csörgő, T., Hegyi, S., Zajc, W. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue 1
container_start_page 67
container_title The European physical journal. C, Particles and fields
container_volume 36
creator Csörgő, T.
Hegyi, S.
Zajc, W. A.
description The peak of the two-particle Bose-Einstein correlation functions has a very interesting structure. It is often believed to have a multivariate Gaussian form. We show here that for the class of stable distributions, characterized by the index of stability \(0 < \alpha \le 2\), the peak has a stretched exponential shape. The Gaussian form corresponds then to the special case of \(\alpha = 2\). We give examples for the Bose-Einstein correlation functions for univariate as well as multivariate stable distributions, and we check the model against two-particle correlation data.
doi_str_mv 10.1140/epjc/s2004-01870-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2334238469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334238469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-591939c66468da68eb55b6f92c640bc8ea2ac25782c201ab4ff259c6349e9bd23</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWKsv4GrAdexNcidNdmqpP1Bwo-uQpBmYUic1dyr0kXwOX8xpK67uWXycc_kYuxZwKwTCJG1WcUISADkIMwVuT9hIoEKuoZan_xnxnF0QrQBAIpgRu3vIlPi87ahPbVfFXEpa-77NHVVNLtXi5_trV1HvwzpVlLclpmrZUl_asD1Ql-ys8WtKV393zN4f52-zZ754fXqZ3S94VCh6XlthlY1aozZLr00KdR10Y2XUCCGa5KWPsp4aGSUIH7BpZD3wCm2yYSnVmN0cezclf24T9W41fNMNk04qhVIZ1Hag5JGKJROV1LhNaT982TkBbm_K7U25gyl3MOWs-gW7Cl3J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334238469</pqid></control><display><type>article</type><title>Bose-Einstein correlations for Lévy stable source distributions</title><source>SpringerLink Journals</source><source>Springer Nature OA Free Journals</source><creator>Csörgő, T. ; Hegyi, S. ; Zajc, W. A.</creator><creatorcontrib>Csörgő, T. ; Hegyi, S. ; Zajc, W. A.</creatorcontrib><description>The peak of the two-particle Bose-Einstein correlation functions has a very interesting structure. It is often believed to have a multivariate Gaussian form. We show here that for the class of stable distributions, characterized by the index of stability \(0 &lt; \alpha \le 2\), the peak has a stretched exponential shape. The Gaussian form corresponds then to the special case of \(\alpha = 2\). We give examples for the Bose-Einstein correlation functions for univariate as well as multivariate stable distributions, and we check the model against two-particle correlation data.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s2004-01870-9</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Correlation ; Multivariate analysis</subject><ispartof>The European physical journal. C, Particles and fields, 2004-07, Vol.36 (1), p.67-78</ispartof><rights>The European Physical Journal C - Particles and Fields is a copyright of Springer, (2004). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-591939c66468da68eb55b6f92c640bc8ea2ac25782c201ab4ff259c6349e9bd23</citedby><cites>FETCH-LOGICAL-c341t-591939c66468da68eb55b6f92c640bc8ea2ac25782c201ab4ff259c6349e9bd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Csörgő, T.</creatorcontrib><creatorcontrib>Hegyi, S.</creatorcontrib><creatorcontrib>Zajc, W. A.</creatorcontrib><title>Bose-Einstein correlations for Lévy stable source distributions</title><title>The European physical journal. C, Particles and fields</title><description>The peak of the two-particle Bose-Einstein correlation functions has a very interesting structure. It is often believed to have a multivariate Gaussian form. We show here that for the class of stable distributions, characterized by the index of stability \(0 &lt; \alpha \le 2\), the peak has a stretched exponential shape. The Gaussian form corresponds then to the special case of \(\alpha = 2\). We give examples for the Bose-Einstein correlation functions for univariate as well as multivariate stable distributions, and we check the model against two-particle correlation data.</description><subject>Correlation</subject><subject>Multivariate analysis</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kM1KAzEUhYMoWKsv4GrAdexNcidNdmqpP1Bwo-uQpBmYUic1dyr0kXwOX8xpK67uWXycc_kYuxZwKwTCJG1WcUISADkIMwVuT9hIoEKuoZan_xnxnF0QrQBAIpgRu3vIlPi87ahPbVfFXEpa-77NHVVNLtXi5_trV1HvwzpVlLclpmrZUl_asD1Ql-ys8WtKV393zN4f52-zZ754fXqZ3S94VCh6XlthlY1aozZLr00KdR10Y2XUCCGa5KWPsp4aGSUIH7BpZD3wCm2yYSnVmN0cezclf24T9W41fNMNk04qhVIZ1Hag5JGKJROV1LhNaT982TkBbm_K7U25gyl3MOWs-gW7Cl3J</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Csörgő, T.</creator><creator>Hegyi, S.</creator><creator>Zajc, W. A.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20040701</creationdate><title>Bose-Einstein correlations for Lévy stable source distributions</title><author>Csörgő, T. ; Hegyi, S. ; Zajc, W. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-591939c66468da68eb55b6f92c640bc8ea2ac25782c201ab4ff259c6349e9bd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Correlation</topic><topic>Multivariate analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Csörgő, T.</creatorcontrib><creatorcontrib>Hegyi, S.</creatorcontrib><creatorcontrib>Zajc, W. A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Csörgő, T.</au><au>Hegyi, S.</au><au>Zajc, W. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bose-Einstein correlations for Lévy stable source distributions</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>36</volume><issue>1</issue><spage>67</spage><epage>78</epage><pages>67-78</pages><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>The peak of the two-particle Bose-Einstein correlation functions has a very interesting structure. It is often believed to have a multivariate Gaussian form. We show here that for the class of stable distributions, characterized by the index of stability \(0 &lt; \alpha \le 2\), the peak has a stretched exponential shape. The Gaussian form corresponds then to the special case of \(\alpha = 2\). We give examples for the Bose-Einstein correlation functions for univariate as well as multivariate stable distributions, and we check the model against two-particle correlation data.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1140/epjc/s2004-01870-9</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2004-07, Vol.36 (1), p.67-78
issn 1434-6044
1434-6052
language eng
recordid cdi_proquest_journals_2334238469
source SpringerLink Journals; Springer Nature OA Free Journals
subjects Correlation
Multivariate analysis
title Bose-Einstein correlations for Lévy stable source distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bose-Einstein%20correlations%20for%20L%C3%A9vy%20stable%20source%20distributions&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Cs%C3%B6rg%C5%91,%20T.&rft.date=2004-07-01&rft.volume=36&rft.issue=1&rft.spage=67&rft.epage=78&rft.pages=67-78&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s2004-01870-9&rft_dat=%3Cproquest_cross%3E2334238469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334238469&rft_id=info:pmid/&rfr_iscdi=true