Construct a composite indicator based on integrating Common Weight Data Envelopment Analysis and principal component analysis models: An application for finding development degree of provinces in Iran

Balanced development of regions requires the fair distribution of facilities and services. Hence, it is necessary to find and estimate the development degree of regions for policy makers. This paper presents an integrated Common Weight Data Envelopment Analysis (CWDEA) – Principal Component Analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Socio-economic planning sciences 2019-12, Vol.68, p.100618, Article 100618
Hauptverfasser: Omrani, Hashem, Valipour, Mahsa, Jafari Mamakani, Saeid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 100618
container_title Socio-economic planning sciences
container_volume 68
creator Omrani, Hashem
Valipour, Mahsa
Jafari Mamakani, Saeid
description Balanced development of regions requires the fair distribution of facilities and services. Hence, it is necessary to find and estimate the development degree of regions for policy makers. This paper presents an integrated Common Weight Data Envelopment Analysis (CWDEA) – Principal Component Analysis (PCA) model to find out the development degree of provinces in Iran. First, 131 suitable indicators are selected and then, the indicators are classified in fourteen different classes. In classical DEA model, each Decision Making Unit (DMU) is free to set its weights to reach the efficient frontier. In this paper, to restrict flexibility in indicator weights, development degree of provinces in each class is calculated using CWDEA model. Since, the proposed CWDEA model is not capable of fully ranking of provinces with all indicators, hence, the development degrees generated by CWDEA model are considered as indicators of PCA and the final ranks are obtained using PCA model. The results of proposed CWDEA-PCA model show that Yazd, Semnan and Bushehr are top three provinces in Iran. •We calculate the development degrees of provinces in different classes based on common weight DEA (CWDEA) model.•We classify the indicators into 14 different classes.•The scores generated by CWDEA model are considered as indicators of PCA model.•We rank the provinces based on the PCA model.
doi_str_mv 10.1016/j.seps.2018.02.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2334207590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038012117300022</els_id><sourcerecordid>2334207590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-2c6fd7721bde6b66d4f26ba7eb9171dcb8b34ec55db0c2c647eae0cd6c3b536b3</originalsourceid><addsrcrecordid>eNp9UUuLFDEQbmQFZ1f_gKeA524rST9mxMsy7urCghfFY8ijeszQnbRJZmD_4f4sqxnFm6eC4ntVfVX1lkPDgffvj03GJTcC-LYB0QB0L6oN3w6y7qHlV9UGQG5r4IK_qq5zPgKAaEW3qZ73MeSSTrYwzWycl5h9QeaD81aXmJjRGR2LgVYFD0kXHw5sH-eZVj_QH34W9kkXze7CGae4zBgKuw16eso-Mx0cW5IP1i96usiHFaD_AubocMofiMH0skyrpyfhkYzHNQN5Ofwn7CgBIosjqcYz6WKmXOwh6fC6ejnqKeObP_Om-n5_923_pX78-vlhf_tYW7mTpRa2H90wCG4c9qbvXTuK3ugBzY4P3FmzNbJF23XOgCVwO6BGsK630nSyN_KmenfRpQS_TpiLOsZTonuyElK2AoZuB4QSF5RNMeeEo6I3zDo9KQ5qbUwd1dqYWhtTIBQ1RqSPFxK9BM8ek8rWIx3pfEJblIv-f_TfwiSl7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334207590</pqid></control><display><type>article</type><title>Construct a composite indicator based on integrating Common Weight Data Envelopment Analysis and principal component analysis models: An application for finding development degree of provinces in Iran</title><source>PAIS Index</source><source>Access via ScienceDirect (Elsevier)</source><creator>Omrani, Hashem ; Valipour, Mahsa ; Jafari Mamakani, Saeid</creator><creatorcontrib>Omrani, Hashem ; Valipour, Mahsa ; Jafari Mamakani, Saeid</creatorcontrib><description>Balanced development of regions requires the fair distribution of facilities and services. Hence, it is necessary to find and estimate the development degree of regions for policy makers. This paper presents an integrated Common Weight Data Envelopment Analysis (CWDEA) – Principal Component Analysis (PCA) model to find out the development degree of provinces in Iran. First, 131 suitable indicators are selected and then, the indicators are classified in fourteen different classes. In classical DEA model, each Decision Making Unit (DMU) is free to set its weights to reach the efficient frontier. In this paper, to restrict flexibility in indicator weights, development degree of provinces in each class is calculated using CWDEA model. Since, the proposed CWDEA model is not capable of fully ranking of provinces with all indicators, hence, the development degrees generated by CWDEA model are considered as indicators of PCA and the final ranks are obtained using PCA model. The results of proposed CWDEA-PCA model show that Yazd, Semnan and Bushehr are top three provinces in Iran. •We calculate the development degrees of provinces in different classes based on common weight DEA (CWDEA) model.•We classify the indicators into 14 different classes.•The scores generated by CWDEA model are considered as indicators of PCA model.•We rank the provinces based on the PCA model.</description><identifier>ISSN: 0038-0121</identifier><identifier>EISSN: 1873-6041</identifier><identifier>DOI: 10.1016/j.seps.2018.02.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Common weights ; Composite indicator ; Data analysis ; Data envelopment analysis ; DEA ; Decision making ; Development ; Flexibility ; Goal programming ; Mathematical models ; PCA ; Policy making ; Principal components analysis ; Provinces ; Ratings &amp; rankings ; Regions ; Sustainable development</subject><ispartof>Socio-economic planning sciences, 2019-12, Vol.68, p.100618, Article 100618</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-2c6fd7721bde6b66d4f26ba7eb9171dcb8b34ec55db0c2c647eae0cd6c3b536b3</citedby><cites>FETCH-LOGICAL-c393t-2c6fd7721bde6b66d4f26ba7eb9171dcb8b34ec55db0c2c647eae0cd6c3b536b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.seps.2018.02.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27866,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Omrani, Hashem</creatorcontrib><creatorcontrib>Valipour, Mahsa</creatorcontrib><creatorcontrib>Jafari Mamakani, Saeid</creatorcontrib><title>Construct a composite indicator based on integrating Common Weight Data Envelopment Analysis and principal component analysis models: An application for finding development degree of provinces in Iran</title><title>Socio-economic planning sciences</title><description>Balanced development of regions requires the fair distribution of facilities and services. Hence, it is necessary to find and estimate the development degree of regions for policy makers. This paper presents an integrated Common Weight Data Envelopment Analysis (CWDEA) – Principal Component Analysis (PCA) model to find out the development degree of provinces in Iran. First, 131 suitable indicators are selected and then, the indicators are classified in fourteen different classes. In classical DEA model, each Decision Making Unit (DMU) is free to set its weights to reach the efficient frontier. In this paper, to restrict flexibility in indicator weights, development degree of provinces in each class is calculated using CWDEA model. Since, the proposed CWDEA model is not capable of fully ranking of provinces with all indicators, hence, the development degrees generated by CWDEA model are considered as indicators of PCA and the final ranks are obtained using PCA model. The results of proposed CWDEA-PCA model show that Yazd, Semnan and Bushehr are top three provinces in Iran. •We calculate the development degrees of provinces in different classes based on common weight DEA (CWDEA) model.•We classify the indicators into 14 different classes.•The scores generated by CWDEA model are considered as indicators of PCA model.•We rank the provinces based on the PCA model.</description><subject>Common weights</subject><subject>Composite indicator</subject><subject>Data analysis</subject><subject>Data envelopment analysis</subject><subject>DEA</subject><subject>Decision making</subject><subject>Development</subject><subject>Flexibility</subject><subject>Goal programming</subject><subject>Mathematical models</subject><subject>PCA</subject><subject>Policy making</subject><subject>Principal components analysis</subject><subject>Provinces</subject><subject>Ratings &amp; rankings</subject><subject>Regions</subject><subject>Sustainable development</subject><issn>0038-0121</issn><issn>1873-6041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp9UUuLFDEQbmQFZ1f_gKeA524rST9mxMsy7urCghfFY8ijeszQnbRJZmD_4f4sqxnFm6eC4ntVfVX1lkPDgffvj03GJTcC-LYB0QB0L6oN3w6y7qHlV9UGQG5r4IK_qq5zPgKAaEW3qZ73MeSSTrYwzWycl5h9QeaD81aXmJjRGR2LgVYFD0kXHw5sH-eZVj_QH34W9kkXze7CGae4zBgKuw16eso-Mx0cW5IP1i96usiHFaD_AubocMofiMH0skyrpyfhkYzHNQN5Ofwn7CgBIosjqcYz6WKmXOwh6fC6ejnqKeObP_Om-n5_923_pX78-vlhf_tYW7mTpRa2H90wCG4c9qbvXTuK3ugBzY4P3FmzNbJF23XOgCVwO6BGsK630nSyN_KmenfRpQS_TpiLOsZTonuyElK2AoZuB4QSF5RNMeeEo6I3zDo9KQ5qbUwd1dqYWhtTIBQ1RqSPFxK9BM8ek8rWIx3pfEJblIv-f_TfwiSl7Q</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Omrani, Hashem</creator><creator>Valipour, Mahsa</creator><creator>Jafari Mamakani, Saeid</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TQ</scope><scope>8BJ</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20191201</creationdate><title>Construct a composite indicator based on integrating Common Weight Data Envelopment Analysis and principal component analysis models: An application for finding development degree of provinces in Iran</title><author>Omrani, Hashem ; Valipour, Mahsa ; Jafari Mamakani, Saeid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-2c6fd7721bde6b66d4f26ba7eb9171dcb8b34ec55db0c2c647eae0cd6c3b536b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Common weights</topic><topic>Composite indicator</topic><topic>Data analysis</topic><topic>Data envelopment analysis</topic><topic>DEA</topic><topic>Decision making</topic><topic>Development</topic><topic>Flexibility</topic><topic>Goal programming</topic><topic>Mathematical models</topic><topic>PCA</topic><topic>Policy making</topic><topic>Principal components analysis</topic><topic>Provinces</topic><topic>Ratings &amp; rankings</topic><topic>Regions</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omrani, Hashem</creatorcontrib><creatorcontrib>Valipour, Mahsa</creatorcontrib><creatorcontrib>Jafari Mamakani, Saeid</creatorcontrib><collection>CrossRef</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Socio-economic planning sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omrani, Hashem</au><au>Valipour, Mahsa</au><au>Jafari Mamakani, Saeid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construct a composite indicator based on integrating Common Weight Data Envelopment Analysis and principal component analysis models: An application for finding development degree of provinces in Iran</atitle><jtitle>Socio-economic planning sciences</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>68</volume><spage>100618</spage><pages>100618-</pages><artnum>100618</artnum><issn>0038-0121</issn><eissn>1873-6041</eissn><abstract>Balanced development of regions requires the fair distribution of facilities and services. Hence, it is necessary to find and estimate the development degree of regions for policy makers. This paper presents an integrated Common Weight Data Envelopment Analysis (CWDEA) – Principal Component Analysis (PCA) model to find out the development degree of provinces in Iran. First, 131 suitable indicators are selected and then, the indicators are classified in fourteen different classes. In classical DEA model, each Decision Making Unit (DMU) is free to set its weights to reach the efficient frontier. In this paper, to restrict flexibility in indicator weights, development degree of provinces in each class is calculated using CWDEA model. Since, the proposed CWDEA model is not capable of fully ranking of provinces with all indicators, hence, the development degrees generated by CWDEA model are considered as indicators of PCA and the final ranks are obtained using PCA model. The results of proposed CWDEA-PCA model show that Yazd, Semnan and Bushehr are top three provinces in Iran. •We calculate the development degrees of provinces in different classes based on common weight DEA (CWDEA) model.•We classify the indicators into 14 different classes.•The scores generated by CWDEA model are considered as indicators of PCA model.•We rank the provinces based on the PCA model.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.seps.2018.02.005</doi></addata></record>
fulltext fulltext
identifier ISSN: 0038-0121
ispartof Socio-economic planning sciences, 2019-12, Vol.68, p.100618, Article 100618
issn 0038-0121
1873-6041
language eng
recordid cdi_proquest_journals_2334207590
source PAIS Index; Access via ScienceDirect (Elsevier)
subjects Common weights
Composite indicator
Data analysis
Data envelopment analysis
DEA
Decision making
Development
Flexibility
Goal programming
Mathematical models
PCA
Policy making
Principal components analysis
Provinces
Ratings & rankings
Regions
Sustainable development
title Construct a composite indicator based on integrating Common Weight Data Envelopment Analysis and principal component analysis models: An application for finding development degree of provinces in Iran
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construct%20a%20composite%20indicator%20based%20on%20integrating%20Common%20Weight%20Data%20Envelopment%20Analysis%20and%20principal%20component%20analysis%20models:%20An%20application%20for%20finding%20development%20degree%20of%20provinces%20in%20Iran&rft.jtitle=Socio-economic%20planning%20sciences&rft.au=Omrani,%20Hashem&rft.date=2019-12-01&rft.volume=68&rft.spage=100618&rft.pages=100618-&rft.artnum=100618&rft.issn=0038-0121&rft.eissn=1873-6041&rft_id=info:doi/10.1016/j.seps.2018.02.005&rft_dat=%3Cproquest_cross%3E2334207590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334207590&rft_id=info:pmid/&rft_els_id=S0038012117300022&rfr_iscdi=true