Revised inflow performance relationship for productivity prediction and energy evaluation based on stage characteristics of Class III methane hydrate deposits

Productivity prediction and energy evaluation can reduce the economic risk of hydrate development. Meanwhile, the study of conventional resources provides useful reference and guidance. Therefore, this paper aims to establish Inflow Performance Relationship (IPR) formulas for the multiphase, non-iso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2019-12, Vol.189, p.116211, Article 116211
Hauptverfasser: Lu, Nu, Hou, Jian, Liu, Yongge, Barrufet, Maria A., Bai, Yajie, Ji, Yunkai, Zhao, Ermeng, Chen, Weiqing, Zhou, Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116211
container_title Energy (Oxford)
container_volume 189
creator Lu, Nu
Hou, Jian
Liu, Yongge
Barrufet, Maria A.
Bai, Yajie
Ji, Yunkai
Zhao, Ermeng
Chen, Weiqing
Zhou, Kang
description Productivity prediction and energy evaluation can reduce the economic risk of hydrate development. Meanwhile, the study of conventional resources provides useful reference and guidance. Therefore, this paper aims to establish Inflow Performance Relationship (IPR) formulas for the multiphase, non-isothermal flow in Class III methane hydrate deposits. The production process is divided into ascent and decline stage based on production characteristics. Fetkovich’s formula and Vogel’s formula are selected respectively for these stages. To revise these formulas, new index and pressure value are introduced to reflect the complexity and variability of hydrate production. New index called pseudo-pressure describes the compound effect of multi-driven forces. New value of minimum production pressure can avoid the adverse impact of ice block. Coefficients in these formulas are quantitatively characterized by selected key factors. The coefficient in Fetkovich’s formula is characterized by layer thickness and gas flowablity. The coefficient in Vogel’s formula is characterized by hydrate saturation, layer thickness and salinity. The verified results indicate that the average errors of the revised Fetkovich’s formula is around 8% and under 11% for the revised Vogel’s formula. This means these revised IPR formulas can provide guidance for the productivity prediction and evaluation of Class III methane hydrate deposits. •Inflow Performance Relationship (IPR) method is established and verified for Class III methane hydrate deposits.•The two-stage method is proposed to revise existed IPR formulas.•New index describes the compound effect of drawdown pressure and hydrate dissociation.•New value of minimum production pressure can avoid the adverse impact of ice block.•The energy efficiency is quantitatively characterized by selected key parameters.
doi_str_mv 10.1016/j.energy.2019.116211
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2334207010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219319061</els_id><sourcerecordid>2334207010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-2de5b7f6a247f95a2aaacfdb255985bed06eb589ca114fc1b76474188d6b75b73</originalsourceid><addsrcrecordid>eNp9UctKBDEQDKLg-vgDDwHPsyaZ90WQxceCIIieQ0_ScbPMTsYku7I_47eadTx7StLpqurqIuSKszlnvLpZz3FA_7GfC8bbOeeV4PyIzHhT51lVN-UxmbG8YllZFOKUnIWwZoyVTdvOyPcr7mxATe1gevdFR_TG-Q0MCqnHHqJ1Q1jZkaYqHb3TWxXtzsZ9eqC26vBPYdB0moDiDvrtL4p2cOBNlxDhA6lagQcV0dsQrQrUGbroIQS6XC7pBuMKBqSrvfYQkWocXbAxXJATA33Ay7_znLw_3L8tnrLnl8fl4u45U3lexExoLLvaVCCK2rQlCABQRneiLNum7FCzCrtkWAHnhVG8q6uiLnjT6KqrEzI_J9cTb7L4ucUQ5dpt_ZAkpUgKgtWMs9RVTF3KuxA8Gjl6uwG_l5zJQxJyLac9yEMSckoiwW4nGCYHO4teBmUxbVhbjypK7ez_BD9zt5h4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334207010</pqid></control><display><type>article</type><title>Revised inflow performance relationship for productivity prediction and energy evaluation based on stage characteristics of Class III methane hydrate deposits</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lu, Nu ; Hou, Jian ; Liu, Yongge ; Barrufet, Maria A. ; Bai, Yajie ; Ji, Yunkai ; Zhao, Ermeng ; Chen, Weiqing ; Zhou, Kang</creator><creatorcontrib>Lu, Nu ; Hou, Jian ; Liu, Yongge ; Barrufet, Maria A. ; Bai, Yajie ; Ji, Yunkai ; Zhao, Ermeng ; Chen, Weiqing ; Zhou, Kang</creatorcontrib><description>Productivity prediction and energy evaluation can reduce the economic risk of hydrate development. Meanwhile, the study of conventional resources provides useful reference and guidance. Therefore, this paper aims to establish Inflow Performance Relationship (IPR) formulas for the multiphase, non-isothermal flow in Class III methane hydrate deposits. The production process is divided into ascent and decline stage based on production characteristics. Fetkovich’s formula and Vogel’s formula are selected respectively for these stages. To revise these formulas, new index and pressure value are introduced to reflect the complexity and variability of hydrate production. New index called pseudo-pressure describes the compound effect of multi-driven forces. New value of minimum production pressure can avoid the adverse impact of ice block. Coefficients in these formulas are quantitatively characterized by selected key factors. The coefficient in Fetkovich’s formula is characterized by layer thickness and gas flowablity. The coefficient in Vogel’s formula is characterized by hydrate saturation, layer thickness and salinity. The verified results indicate that the average errors of the revised Fetkovich’s formula is around 8% and under 11% for the revised Vogel’s formula. This means these revised IPR formulas can provide guidance for the productivity prediction and evaluation of Class III methane hydrate deposits. •Inflow Performance Relationship (IPR) method is established and verified for Class III methane hydrate deposits.•The two-stage method is proposed to revise existed IPR formulas.•New index describes the compound effect of drawdown pressure and hydrate dissociation.•New value of minimum production pressure can avoid the adverse impact of ice block.•The energy efficiency is quantitatively characterized by selected key parameters.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.116211</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Ascent ; Class III gas hydrate deposit ; Coefficients ; Deposits ; Depressurization ; Energy evaluation ; Ice ; Inflow ; Inflow performance relationship ; Isothermal flow ; Methane ; Methane hydrates ; Pressure ; Pressure effects ; Productivity ; Stage division ; Thickness ; Well productivity prediction</subject><ispartof>Energy (Oxford), 2019-12, Vol.189, p.116211, Article 116211</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-2de5b7f6a247f95a2aaacfdb255985bed06eb589ca114fc1b76474188d6b75b73</citedby><cites>FETCH-LOGICAL-c334t-2de5b7f6a247f95a2aaacfdb255985bed06eb589ca114fc1b76474188d6b75b73</cites><orcidid>0000-0001-9609-1039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2019.116211$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Lu, Nu</creatorcontrib><creatorcontrib>Hou, Jian</creatorcontrib><creatorcontrib>Liu, Yongge</creatorcontrib><creatorcontrib>Barrufet, Maria A.</creatorcontrib><creatorcontrib>Bai, Yajie</creatorcontrib><creatorcontrib>Ji, Yunkai</creatorcontrib><creatorcontrib>Zhao, Ermeng</creatorcontrib><creatorcontrib>Chen, Weiqing</creatorcontrib><creatorcontrib>Zhou, Kang</creatorcontrib><title>Revised inflow performance relationship for productivity prediction and energy evaluation based on stage characteristics of Class III methane hydrate deposits</title><title>Energy (Oxford)</title><description>Productivity prediction and energy evaluation can reduce the economic risk of hydrate development. Meanwhile, the study of conventional resources provides useful reference and guidance. Therefore, this paper aims to establish Inflow Performance Relationship (IPR) formulas for the multiphase, non-isothermal flow in Class III methane hydrate deposits. The production process is divided into ascent and decline stage based on production characteristics. Fetkovich’s formula and Vogel’s formula are selected respectively for these stages. To revise these formulas, new index and pressure value are introduced to reflect the complexity and variability of hydrate production. New index called pseudo-pressure describes the compound effect of multi-driven forces. New value of minimum production pressure can avoid the adverse impact of ice block. Coefficients in these formulas are quantitatively characterized by selected key factors. The coefficient in Fetkovich’s formula is characterized by layer thickness and gas flowablity. The coefficient in Vogel’s formula is characterized by hydrate saturation, layer thickness and salinity. The verified results indicate that the average errors of the revised Fetkovich’s formula is around 8% and under 11% for the revised Vogel’s formula. This means these revised IPR formulas can provide guidance for the productivity prediction and evaluation of Class III methane hydrate deposits. •Inflow Performance Relationship (IPR) method is established and verified for Class III methane hydrate deposits.•The two-stage method is proposed to revise existed IPR formulas.•New index describes the compound effect of drawdown pressure and hydrate dissociation.•New value of minimum production pressure can avoid the adverse impact of ice block.•The energy efficiency is quantitatively characterized by selected key parameters.</description><subject>Ascent</subject><subject>Class III gas hydrate deposit</subject><subject>Coefficients</subject><subject>Deposits</subject><subject>Depressurization</subject><subject>Energy evaluation</subject><subject>Ice</subject><subject>Inflow</subject><subject>Inflow performance relationship</subject><subject>Isothermal flow</subject><subject>Methane</subject><subject>Methane hydrates</subject><subject>Pressure</subject><subject>Pressure effects</subject><subject>Productivity</subject><subject>Stage division</subject><subject>Thickness</subject><subject>Well productivity prediction</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UctKBDEQDKLg-vgDDwHPsyaZ90WQxceCIIieQ0_ScbPMTsYku7I_47eadTx7StLpqurqIuSKszlnvLpZz3FA_7GfC8bbOeeV4PyIzHhT51lVN-UxmbG8YllZFOKUnIWwZoyVTdvOyPcr7mxATe1gevdFR_TG-Q0MCqnHHqJ1Q1jZkaYqHb3TWxXtzsZ9eqC26vBPYdB0moDiDvrtL4p2cOBNlxDhA6lagQcV0dsQrQrUGbroIQS6XC7pBuMKBqSrvfYQkWocXbAxXJATA33Ay7_znLw_3L8tnrLnl8fl4u45U3lexExoLLvaVCCK2rQlCABQRneiLNum7FCzCrtkWAHnhVG8q6uiLnjT6KqrEzI_J9cTb7L4ucUQ5dpt_ZAkpUgKgtWMs9RVTF3KuxA8Gjl6uwG_l5zJQxJyLac9yEMSckoiwW4nGCYHO4teBmUxbVhbjypK7ez_BD9zt5h4</recordid><startdate>20191215</startdate><enddate>20191215</enddate><creator>Lu, Nu</creator><creator>Hou, Jian</creator><creator>Liu, Yongge</creator><creator>Barrufet, Maria A.</creator><creator>Bai, Yajie</creator><creator>Ji, Yunkai</creator><creator>Zhao, Ermeng</creator><creator>Chen, Weiqing</creator><creator>Zhou, Kang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9609-1039</orcidid></search><sort><creationdate>20191215</creationdate><title>Revised inflow performance relationship for productivity prediction and energy evaluation based on stage characteristics of Class III methane hydrate deposits</title><author>Lu, Nu ; Hou, Jian ; Liu, Yongge ; Barrufet, Maria A. ; Bai, Yajie ; Ji, Yunkai ; Zhao, Ermeng ; Chen, Weiqing ; Zhou, Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-2de5b7f6a247f95a2aaacfdb255985bed06eb589ca114fc1b76474188d6b75b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ascent</topic><topic>Class III gas hydrate deposit</topic><topic>Coefficients</topic><topic>Deposits</topic><topic>Depressurization</topic><topic>Energy evaluation</topic><topic>Ice</topic><topic>Inflow</topic><topic>Inflow performance relationship</topic><topic>Isothermal flow</topic><topic>Methane</topic><topic>Methane hydrates</topic><topic>Pressure</topic><topic>Pressure effects</topic><topic>Productivity</topic><topic>Stage division</topic><topic>Thickness</topic><topic>Well productivity prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Nu</creatorcontrib><creatorcontrib>Hou, Jian</creatorcontrib><creatorcontrib>Liu, Yongge</creatorcontrib><creatorcontrib>Barrufet, Maria A.</creatorcontrib><creatorcontrib>Bai, Yajie</creatorcontrib><creatorcontrib>Ji, Yunkai</creatorcontrib><creatorcontrib>Zhao, Ermeng</creatorcontrib><creatorcontrib>Chen, Weiqing</creatorcontrib><creatorcontrib>Zhou, Kang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Nu</au><au>Hou, Jian</au><au>Liu, Yongge</au><au>Barrufet, Maria A.</au><au>Bai, Yajie</au><au>Ji, Yunkai</au><au>Zhao, Ermeng</au><au>Chen, Weiqing</au><au>Zhou, Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revised inflow performance relationship for productivity prediction and energy evaluation based on stage characteristics of Class III methane hydrate deposits</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-12-15</date><risdate>2019</risdate><volume>189</volume><spage>116211</spage><pages>116211-</pages><artnum>116211</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>Productivity prediction and energy evaluation can reduce the economic risk of hydrate development. Meanwhile, the study of conventional resources provides useful reference and guidance. Therefore, this paper aims to establish Inflow Performance Relationship (IPR) formulas for the multiphase, non-isothermal flow in Class III methane hydrate deposits. The production process is divided into ascent and decline stage based on production characteristics. Fetkovich’s formula and Vogel’s formula are selected respectively for these stages. To revise these formulas, new index and pressure value are introduced to reflect the complexity and variability of hydrate production. New index called pseudo-pressure describes the compound effect of multi-driven forces. New value of minimum production pressure can avoid the adverse impact of ice block. Coefficients in these formulas are quantitatively characterized by selected key factors. The coefficient in Fetkovich’s formula is characterized by layer thickness and gas flowablity. The coefficient in Vogel’s formula is characterized by hydrate saturation, layer thickness and salinity. The verified results indicate that the average errors of the revised Fetkovich’s formula is around 8% and under 11% for the revised Vogel’s formula. This means these revised IPR formulas can provide guidance for the productivity prediction and evaluation of Class III methane hydrate deposits. •Inflow Performance Relationship (IPR) method is established and verified for Class III methane hydrate deposits.•The two-stage method is proposed to revise existed IPR formulas.•New index describes the compound effect of drawdown pressure and hydrate dissociation.•New value of minimum production pressure can avoid the adverse impact of ice block.•The energy efficiency is quantitatively characterized by selected key parameters.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.116211</doi><orcidid>https://orcid.org/0000-0001-9609-1039</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2019-12, Vol.189, p.116211, Article 116211
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2334207010
source Access via ScienceDirect (Elsevier)
subjects Ascent
Class III gas hydrate deposit
Coefficients
Deposits
Depressurization
Energy evaluation
Ice
Inflow
Inflow performance relationship
Isothermal flow
Methane
Methane hydrates
Pressure
Pressure effects
Productivity
Stage division
Thickness
Well productivity prediction
title Revised inflow performance relationship for productivity prediction and energy evaluation based on stage characteristics of Class III methane hydrate deposits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revised%20inflow%20performance%20relationship%20for%20productivity%20prediction%20and%20energy%20evaluation%20based%20on%20stage%20characteristics%20of%20Class%20III%20methane%20hydrate%20deposits&rft.jtitle=Energy%20(Oxford)&rft.au=Lu,%20Nu&rft.date=2019-12-15&rft.volume=189&rft.spage=116211&rft.pages=116211-&rft.artnum=116211&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.116211&rft_dat=%3Cproquest_cross%3E2334207010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334207010&rft_id=info:pmid/&rft_els_id=S0360544219319061&rfr_iscdi=true