Higher-order topological insulators in a magnetic field

Two-dimensional (2D) generalization of the Su-Schriffer-Heeger (SSH) model serves as a platform for exploring higher-order topological insulators (HOTI). We investigate this model in a magnetic field which interpolates two models studied so far with zero flux and π flux per plaquette. We show that i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-12, Vol.100 (24), p.1, Article 245108
Hauptverfasser: Otaki, Yuria, Fukui, Takahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 1
container_title Physical review. B
container_volume 100
creator Otaki, Yuria
Fukui, Takahiro
description Two-dimensional (2D) generalization of the Su-Schriffer-Heeger (SSH) model serves as a platform for exploring higher-order topological insulators (HOTI). We investigate this model in a magnetic field which interpolates two models studied so far with zero flux and π flux per plaquette. We show that in the Hofstadter butterfly there appears a wide gap around the π flux, which belongs to the same HOTI discovered by Benalcazar-Bernevig-Hughes (BBH). It turns out that in a weak field regime HOTI could exist even within a small gap disconnected from the wider gap around π flux. To characterize HOTI, we employ the entanglement polarization (eP) technique which is useful even if the basic four bands split into many Landau levels under a magnetic field.
doi_str_mv 10.1103/PhysRevB.100.245108
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2334203860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334203860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-ca77d4d08b6e61ac3e359335040a4915f1a1011dfc942dc134fd232bfc6044603</originalsourceid><addsrcrecordid>eNo9kE9LAzEUxIMoWGo_gZcFz1vfy8tmm6MWtUJBET2HNH_aLdumJrtCv72tVU8zDMMM_Bi7RhgjAt2-rvb5zX_djxFgzEWFMDljAy6kKpWS6vzfV3DJRjmvAQAlqBrUgNWzZrnyqYzJ-VR0cRfbuGysaYtmm_vWdDHlgy1MsTHLre8aW4TGt-6KXQTTZj_61SH7eHx4n87K-cvT8_RuXlpS1JXW1LUTDiYL6SUaS54qRVSBACMUVgENAqILVgnuLJIIjhNfBCtBCAk0ZDen3V2Kn73PnV7HPm0Pl5oTCQ40-WnRqWVTzDn5oHep2Zi01wj6CEn_QToEoE-Q6BvrSVqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334203860</pqid></control><display><type>article</type><title>Higher-order topological insulators in a magnetic field</title><source>American Physical Society Journals</source><creator>Otaki, Yuria ; Fukui, Takahiro</creator><creatorcontrib>Otaki, Yuria ; Fukui, Takahiro</creatorcontrib><description>Two-dimensional (2D) generalization of the Su-Schriffer-Heeger (SSH) model serves as a platform for exploring higher-order topological insulators (HOTI). We investigate this model in a magnetic field which interpolates two models studied so far with zero flux and π flux per plaquette. We show that in the Hofstadter butterfly there appears a wide gap around the π flux, which belongs to the same HOTI discovered by Benalcazar-Bernevig-Hughes (BBH). It turns out that in a weak field regime HOTI could exist even within a small gap disconnected from the wider gap around π flux. To characterize HOTI, we employ the entanglement polarization (eP) technique which is useful even if the basic four bands split into many Landau levels under a magnetic field.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.100.245108</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Entanglement ; Flux ; Magnetic fields ; Topological insulators ; Topology ; Two dimensional models</subject><ispartof>Physical review. B, 2019-12, Vol.100 (24), p.1, Article 245108</ispartof><rights>Copyright American Physical Society Dec 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-ca77d4d08b6e61ac3e359335040a4915f1a1011dfc942dc134fd232bfc6044603</citedby><cites>FETCH-LOGICAL-c393t-ca77d4d08b6e61ac3e359335040a4915f1a1011dfc942dc134fd232bfc6044603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids></links><search><creatorcontrib>Otaki, Yuria</creatorcontrib><creatorcontrib>Fukui, Takahiro</creatorcontrib><title>Higher-order topological insulators in a magnetic field</title><title>Physical review. B</title><description>Two-dimensional (2D) generalization of the Su-Schriffer-Heeger (SSH) model serves as a platform for exploring higher-order topological insulators (HOTI). We investigate this model in a magnetic field which interpolates two models studied so far with zero flux and π flux per plaquette. We show that in the Hofstadter butterfly there appears a wide gap around the π flux, which belongs to the same HOTI discovered by Benalcazar-Bernevig-Hughes (BBH). It turns out that in a weak field regime HOTI could exist even within a small gap disconnected from the wider gap around π flux. To characterize HOTI, we employ the entanglement polarization (eP) technique which is useful even if the basic four bands split into many Landau levels under a magnetic field.</description><subject>Entanglement</subject><subject>Flux</subject><subject>Magnetic fields</subject><subject>Topological insulators</subject><subject>Topology</subject><subject>Two dimensional models</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEUxIMoWGo_gZcFz1vfy8tmm6MWtUJBET2HNH_aLdumJrtCv72tVU8zDMMM_Bi7RhgjAt2-rvb5zX_djxFgzEWFMDljAy6kKpWS6vzfV3DJRjmvAQAlqBrUgNWzZrnyqYzJ-VR0cRfbuGysaYtmm_vWdDHlgy1MsTHLre8aW4TGt-6KXQTTZj_61SH7eHx4n87K-cvT8_RuXlpS1JXW1LUTDiYL6SUaS54qRVSBACMUVgENAqILVgnuLJIIjhNfBCtBCAk0ZDen3V2Kn73PnV7HPm0Pl5oTCQ40-WnRqWVTzDn5oHep2Zi01wj6CEn_QToEoE-Q6BvrSVqg</recordid><startdate>20191205</startdate><enddate>20191205</enddate><creator>Otaki, Yuria</creator><creator>Fukui, Takahiro</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20191205</creationdate><title>Higher-order topological insulators in a magnetic field</title><author>Otaki, Yuria ; Fukui, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-ca77d4d08b6e61ac3e359335040a4915f1a1011dfc942dc134fd232bfc6044603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Entanglement</topic><topic>Flux</topic><topic>Magnetic fields</topic><topic>Topological insulators</topic><topic>Topology</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otaki, Yuria</creatorcontrib><creatorcontrib>Fukui, Takahiro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otaki, Yuria</au><au>Fukui, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher-order topological insulators in a magnetic field</atitle><jtitle>Physical review. B</jtitle><date>2019-12-05</date><risdate>2019</risdate><volume>100</volume><issue>24</issue><spage>1</spage><pages>1-</pages><artnum>245108</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Two-dimensional (2D) generalization of the Su-Schriffer-Heeger (SSH) model serves as a platform for exploring higher-order topological insulators (HOTI). We investigate this model in a magnetic field which interpolates two models studied so far with zero flux and π flux per plaquette. We show that in the Hofstadter butterfly there appears a wide gap around the π flux, which belongs to the same HOTI discovered by Benalcazar-Bernevig-Hughes (BBH). It turns out that in a weak field regime HOTI could exist even within a small gap disconnected from the wider gap around π flux. To characterize HOTI, we employ the entanglement polarization (eP) technique which is useful even if the basic four bands split into many Landau levels under a magnetic field.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.100.245108</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-12, Vol.100 (24), p.1, Article 245108
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2334203860
source American Physical Society Journals
subjects Entanglement
Flux
Magnetic fields
Topological insulators
Topology
Two dimensional models
title Higher-order topological insulators in a magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher-order%20topological%20insulators%20in%20a%20magnetic%20field&rft.jtitle=Physical%20review.%20B&rft.au=Otaki,%20Yuria&rft.date=2019-12-05&rft.volume=100&rft.issue=24&rft.spage=1&rft.pages=1-&rft.artnum=245108&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.100.245108&rft_dat=%3Cproquest_cross%3E2334203860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334203860&rft_id=info:pmid/&rfr_iscdi=true