Corrosion fatigue crack growth behavior of alloy 52 M in high-temperature water
The corrosion fatigue (CF) crack growth behavior of Alloy 52 M in high temperature water was investigated in various water chemistries with dissolved oxygen (DO), dissolved hydrogen (DH) or Ar. The experimental results indicated that at higher load ratio (R), the CF crack growth rates (CGRs) in oxyg...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2020-01, Vol.528, p.151848, Article 151848 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 151848 |
container_title | Journal of nuclear materials |
container_volume | 528 |
creator | Wang, Jiamei Su, Haozhan Chen, Kai Du, Donghai Zhang, Lefu Sun, Yongduo |
description | The corrosion fatigue (CF) crack growth behavior of Alloy 52 M in high temperature water was investigated in various water chemistries with dissolved oxygen (DO), dissolved hydrogen (DH) or Ar. The experimental results indicated that at higher load ratio (R), the CF crack growth rates (CGRs) in oxygenated water was slightly higher than Ar deaerated water, while under lower R, the relationship was reversed. Micro-characterization of the crack paths and fracture surfaces revealed that severe crack branching and localized inter-dendritic cracking occurred in oxygenated water, while relatively straight transgranular cracking developed in hydrogen and Ar deaerated water. Minor environmental enhancement of CGRs for Alloy 52 M weld metal was detected in oxygenated water but no environmental enhancement of CGRs was detected in hydrogen or Ar deaerated water. |
doi_str_mv | 10.1016/j.jnucmat.2019.151848 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2334202691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311519307822</els_id><sourcerecordid>2334202691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-b100101a298c19b33a410c0f7d4fa91a85b9744c70e9946c6aa307800739938c3</originalsourceid><addsrcrecordid>eNqFkEtOwzAURS0EEqWwBCRLjBOeP0nsEUIVP6kIIcHYclyncWjj4jhUnbEj9sRKSJXOGb3J_bx7ELokkBIg-XWTNm1v1jqmFIhMSUYEF0doQkTBEi4oHKMJAKUJIyQ7RWdd1wBAJiGboNeZD8F3zre40tEte4tN0OYDL4PfxhqXttZfzgfsK6xXK7_DGf39_nnGrsW1W9ZJtOuNDTr2weKtjjaco5NKrzp7cbhT9H5_9zZ7TOYvD0-z23liGCtiUhKA4XtNpTBEloxpTsBAVSx4pSXRIitlwbkpwErJc5NrzaAQAAWTkgnDpuhqzN0E_9nbLqrG96EdKhVljFOguSSDKhtVZljZBVupTXBrHXaKgNrTU4060FN7emqkN_huRp8dJnw5G1RnnG2NXbhgTVQL7_5J-ANBbXqf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334202691</pqid></control><display><type>article</type><title>Corrosion fatigue crack growth behavior of alloy 52 M in high-temperature water</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Jiamei ; Su, Haozhan ; Chen, Kai ; Du, Donghai ; Zhang, Lefu ; Sun, Yongduo</creator><creatorcontrib>Wang, Jiamei ; Su, Haozhan ; Chen, Kai ; Du, Donghai ; Zhang, Lefu ; Sun, Yongduo</creatorcontrib><description>The corrosion fatigue (CF) crack growth behavior of Alloy 52 M in high temperature water was investigated in various water chemistries with dissolved oxygen (DO), dissolved hydrogen (DH) or Ar. The experimental results indicated that at higher load ratio (R), the CF crack growth rates (CGRs) in oxygenated water was slightly higher than Ar deaerated water, while under lower R, the relationship was reversed. Micro-characterization of the crack paths and fracture surfaces revealed that severe crack branching and localized inter-dendritic cracking occurred in oxygenated water, while relatively straight transgranular cracking developed in hydrogen and Ar deaerated water. Minor environmental enhancement of CGRs for Alloy 52 M weld metal was detected in oxygenated water but no environmental enhancement of CGRs was detected in hydrogen or Ar deaerated water.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2019.151848</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alloy 52 M ; Corrosion ; Corrosion fatigue ; Crack growth rate ; Crack propagation ; Dendritic branching ; Dissolved oxygen ; Fatigue ; Fatigue failure ; Fracture mechanics ; Fracture surfaces ; Growth rate ; High temperature ; Hydrogen ; Light water reactor ; Nickel base alloys ; Organic chemistry ; Oxygenation ; Stress corrosion cracking ; Weld metal</subject><ispartof>Journal of nuclear materials, 2020-01, Vol.528, p.151848, Article 151848</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-b100101a298c19b33a410c0f7d4fa91a85b9744c70e9946c6aa307800739938c3</citedby><cites>FETCH-LOGICAL-c337t-b100101a298c19b33a410c0f7d4fa91a85b9744c70e9946c6aa307800739938c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2019.151848$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Wang, Jiamei</creatorcontrib><creatorcontrib>Su, Haozhan</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Du, Donghai</creatorcontrib><creatorcontrib>Zhang, Lefu</creatorcontrib><creatorcontrib>Sun, Yongduo</creatorcontrib><title>Corrosion fatigue crack growth behavior of alloy 52 M in high-temperature water</title><title>Journal of nuclear materials</title><description>The corrosion fatigue (CF) crack growth behavior of Alloy 52 M in high temperature water was investigated in various water chemistries with dissolved oxygen (DO), dissolved hydrogen (DH) or Ar. The experimental results indicated that at higher load ratio (R), the CF crack growth rates (CGRs) in oxygenated water was slightly higher than Ar deaerated water, while under lower R, the relationship was reversed. Micro-characterization of the crack paths and fracture surfaces revealed that severe crack branching and localized inter-dendritic cracking occurred in oxygenated water, while relatively straight transgranular cracking developed in hydrogen and Ar deaerated water. Minor environmental enhancement of CGRs for Alloy 52 M weld metal was detected in oxygenated water but no environmental enhancement of CGRs was detected in hydrogen or Ar deaerated water.</description><subject>Alloy 52 M</subject><subject>Corrosion</subject><subject>Corrosion fatigue</subject><subject>Crack growth rate</subject><subject>Crack propagation</subject><subject>Dendritic branching</subject><subject>Dissolved oxygen</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>Growth rate</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Light water reactor</subject><subject>Nickel base alloys</subject><subject>Organic chemistry</subject><subject>Oxygenation</subject><subject>Stress corrosion cracking</subject><subject>Weld metal</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAURS0EEqWwBCRLjBOeP0nsEUIVP6kIIcHYclyncWjj4jhUnbEj9sRKSJXOGb3J_bx7ELokkBIg-XWTNm1v1jqmFIhMSUYEF0doQkTBEi4oHKMJAKUJIyQ7RWdd1wBAJiGboNeZD8F3zre40tEte4tN0OYDL4PfxhqXttZfzgfsK6xXK7_DGf39_nnGrsW1W9ZJtOuNDTr2weKtjjaco5NKrzp7cbhT9H5_9zZ7TOYvD0-z23liGCtiUhKA4XtNpTBEloxpTsBAVSx4pSXRIitlwbkpwErJc5NrzaAQAAWTkgnDpuhqzN0E_9nbLqrG96EdKhVljFOguSSDKhtVZljZBVupTXBrHXaKgNrTU4060FN7emqkN_huRp8dJnw5G1RnnG2NXbhgTVQL7_5J-ANBbXqf</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Wang, Jiamei</creator><creator>Su, Haozhan</creator><creator>Chen, Kai</creator><creator>Du, Donghai</creator><creator>Zhang, Lefu</creator><creator>Sun, Yongduo</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202001</creationdate><title>Corrosion fatigue crack growth behavior of alloy 52 M in high-temperature water</title><author>Wang, Jiamei ; Su, Haozhan ; Chen, Kai ; Du, Donghai ; Zhang, Lefu ; Sun, Yongduo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-b100101a298c19b33a410c0f7d4fa91a85b9744c70e9946c6aa307800739938c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloy 52 M</topic><topic>Corrosion</topic><topic>Corrosion fatigue</topic><topic>Crack growth rate</topic><topic>Crack propagation</topic><topic>Dendritic branching</topic><topic>Dissolved oxygen</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>Growth rate</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Light water reactor</topic><topic>Nickel base alloys</topic><topic>Organic chemistry</topic><topic>Oxygenation</topic><topic>Stress corrosion cracking</topic><topic>Weld metal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiamei</creatorcontrib><creatorcontrib>Su, Haozhan</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Du, Donghai</creatorcontrib><creatorcontrib>Zhang, Lefu</creatorcontrib><creatorcontrib>Sun, Yongduo</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiamei</au><au>Su, Haozhan</au><au>Chen, Kai</au><au>Du, Donghai</au><au>Zhang, Lefu</au><au>Sun, Yongduo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion fatigue crack growth behavior of alloy 52 M in high-temperature water</atitle><jtitle>Journal of nuclear materials</jtitle><date>2020-01</date><risdate>2020</risdate><volume>528</volume><spage>151848</spage><pages>151848-</pages><artnum>151848</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>The corrosion fatigue (CF) crack growth behavior of Alloy 52 M in high temperature water was investigated in various water chemistries with dissolved oxygen (DO), dissolved hydrogen (DH) or Ar. The experimental results indicated that at higher load ratio (R), the CF crack growth rates (CGRs) in oxygenated water was slightly higher than Ar deaerated water, while under lower R, the relationship was reversed. Micro-characterization of the crack paths and fracture surfaces revealed that severe crack branching and localized inter-dendritic cracking occurred in oxygenated water, while relatively straight transgranular cracking developed in hydrogen and Ar deaerated water. Minor environmental enhancement of CGRs for Alloy 52 M weld metal was detected in oxygenated water but no environmental enhancement of CGRs was detected in hydrogen or Ar deaerated water.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2019.151848</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2020-01, Vol.528, p.151848, Article 151848 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_proquest_journals_2334202691 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Alloy 52 M Corrosion Corrosion fatigue Crack growth rate Crack propagation Dendritic branching Dissolved oxygen Fatigue Fatigue failure Fracture mechanics Fracture surfaces Growth rate High temperature Hydrogen Light water reactor Nickel base alloys Organic chemistry Oxygenation Stress corrosion cracking Weld metal |
title | Corrosion fatigue crack growth behavior of alloy 52 M in high-temperature water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20fatigue%20crack%20growth%20behavior%20of%20alloy%2052%E2%80%AFM%20in%20high-temperature%20water&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Wang,%20Jiamei&rft.date=2020-01&rft.volume=528&rft.spage=151848&rft.pages=151848-&rft.artnum=151848&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2019.151848&rft_dat=%3Cproquest_cross%3E2334202691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334202691&rft_id=info:pmid/&rft_els_id=S0022311519307822&rfr_iscdi=true |