Corrosion fatigue crack growth behavior of alloy 52 M in high-temperature water

The corrosion fatigue (CF) crack growth behavior of Alloy 52 M in high temperature water was investigated in various water chemistries with dissolved oxygen (DO), dissolved hydrogen (DH) or Ar. The experimental results indicated that at higher load ratio (R), the CF crack growth rates (CGRs) in oxyg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2020-01, Vol.528, p.151848, Article 151848
Hauptverfasser: Wang, Jiamei, Su, Haozhan, Chen, Kai, Du, Donghai, Zhang, Lefu, Sun, Yongduo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 151848
container_title Journal of nuclear materials
container_volume 528
creator Wang, Jiamei
Su, Haozhan
Chen, Kai
Du, Donghai
Zhang, Lefu
Sun, Yongduo
description The corrosion fatigue (CF) crack growth behavior of Alloy 52 M in high temperature water was investigated in various water chemistries with dissolved oxygen (DO), dissolved hydrogen (DH) or Ar. The experimental results indicated that at higher load ratio (R), the CF crack growth rates (CGRs) in oxygenated water was slightly higher than Ar deaerated water, while under lower R, the relationship was reversed. Micro-characterization of the crack paths and fracture surfaces revealed that severe crack branching and localized inter-dendritic cracking occurred in oxygenated water, while relatively straight transgranular cracking developed in hydrogen and Ar deaerated water. Minor environmental enhancement of CGRs for Alloy 52 M weld metal was detected in oxygenated water but no environmental enhancement of CGRs was detected in hydrogen or Ar deaerated water.
doi_str_mv 10.1016/j.jnucmat.2019.151848
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2334202691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311519307822</els_id><sourcerecordid>2334202691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-b100101a298c19b33a410c0f7d4fa91a85b9744c70e9946c6aa307800739938c3</originalsourceid><addsrcrecordid>eNqFkEtOwzAURS0EEqWwBCRLjBOeP0nsEUIVP6kIIcHYclyncWjj4jhUnbEj9sRKSJXOGb3J_bx7ELokkBIg-XWTNm1v1jqmFIhMSUYEF0doQkTBEi4oHKMJAKUJIyQ7RWdd1wBAJiGboNeZD8F3zre40tEte4tN0OYDL4PfxhqXttZfzgfsK6xXK7_DGf39_nnGrsW1W9ZJtOuNDTr2weKtjjaco5NKrzp7cbhT9H5_9zZ7TOYvD0-z23liGCtiUhKA4XtNpTBEloxpTsBAVSx4pSXRIitlwbkpwErJc5NrzaAQAAWTkgnDpuhqzN0E_9nbLqrG96EdKhVljFOguSSDKhtVZljZBVupTXBrHXaKgNrTU4060FN7emqkN_huRp8dJnw5G1RnnG2NXbhgTVQL7_5J-ANBbXqf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334202691</pqid></control><display><type>article</type><title>Corrosion fatigue crack growth behavior of alloy 52 M in high-temperature water</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Jiamei ; Su, Haozhan ; Chen, Kai ; Du, Donghai ; Zhang, Lefu ; Sun, Yongduo</creator><creatorcontrib>Wang, Jiamei ; Su, Haozhan ; Chen, Kai ; Du, Donghai ; Zhang, Lefu ; Sun, Yongduo</creatorcontrib><description>The corrosion fatigue (CF) crack growth behavior of Alloy 52 M in high temperature water was investigated in various water chemistries with dissolved oxygen (DO), dissolved hydrogen (DH) or Ar. The experimental results indicated that at higher load ratio (R), the CF crack growth rates (CGRs) in oxygenated water was slightly higher than Ar deaerated water, while under lower R, the relationship was reversed. Micro-characterization of the crack paths and fracture surfaces revealed that severe crack branching and localized inter-dendritic cracking occurred in oxygenated water, while relatively straight transgranular cracking developed in hydrogen and Ar deaerated water. Minor environmental enhancement of CGRs for Alloy 52 M weld metal was detected in oxygenated water but no environmental enhancement of CGRs was detected in hydrogen or Ar deaerated water.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2019.151848</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alloy 52 M ; Corrosion ; Corrosion fatigue ; Crack growth rate ; Crack propagation ; Dendritic branching ; Dissolved oxygen ; Fatigue ; Fatigue failure ; Fracture mechanics ; Fracture surfaces ; Growth rate ; High temperature ; Hydrogen ; Light water reactor ; Nickel base alloys ; Organic chemistry ; Oxygenation ; Stress corrosion cracking ; Weld metal</subject><ispartof>Journal of nuclear materials, 2020-01, Vol.528, p.151848, Article 151848</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-b100101a298c19b33a410c0f7d4fa91a85b9744c70e9946c6aa307800739938c3</citedby><cites>FETCH-LOGICAL-c337t-b100101a298c19b33a410c0f7d4fa91a85b9744c70e9946c6aa307800739938c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2019.151848$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Wang, Jiamei</creatorcontrib><creatorcontrib>Su, Haozhan</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Du, Donghai</creatorcontrib><creatorcontrib>Zhang, Lefu</creatorcontrib><creatorcontrib>Sun, Yongduo</creatorcontrib><title>Corrosion fatigue crack growth behavior of alloy 52 M in high-temperature water</title><title>Journal of nuclear materials</title><description>The corrosion fatigue (CF) crack growth behavior of Alloy 52 M in high temperature water was investigated in various water chemistries with dissolved oxygen (DO), dissolved hydrogen (DH) or Ar. The experimental results indicated that at higher load ratio (R), the CF crack growth rates (CGRs) in oxygenated water was slightly higher than Ar deaerated water, while under lower R, the relationship was reversed. Micro-characterization of the crack paths and fracture surfaces revealed that severe crack branching and localized inter-dendritic cracking occurred in oxygenated water, while relatively straight transgranular cracking developed in hydrogen and Ar deaerated water. Minor environmental enhancement of CGRs for Alloy 52 M weld metal was detected in oxygenated water but no environmental enhancement of CGRs was detected in hydrogen or Ar deaerated water.</description><subject>Alloy 52 M</subject><subject>Corrosion</subject><subject>Corrosion fatigue</subject><subject>Crack growth rate</subject><subject>Crack propagation</subject><subject>Dendritic branching</subject><subject>Dissolved oxygen</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>Growth rate</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Light water reactor</subject><subject>Nickel base alloys</subject><subject>Organic chemistry</subject><subject>Oxygenation</subject><subject>Stress corrosion cracking</subject><subject>Weld metal</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAURS0EEqWwBCRLjBOeP0nsEUIVP6kIIcHYclyncWjj4jhUnbEj9sRKSJXOGb3J_bx7ELokkBIg-XWTNm1v1jqmFIhMSUYEF0doQkTBEi4oHKMJAKUJIyQ7RWdd1wBAJiGboNeZD8F3zre40tEte4tN0OYDL4PfxhqXttZfzgfsK6xXK7_DGf39_nnGrsW1W9ZJtOuNDTr2weKtjjaco5NKrzp7cbhT9H5_9zZ7TOYvD0-z23liGCtiUhKA4XtNpTBEloxpTsBAVSx4pSXRIitlwbkpwErJc5NrzaAQAAWTkgnDpuhqzN0E_9nbLqrG96EdKhVljFOguSSDKhtVZljZBVupTXBrHXaKgNrTU4060FN7emqkN_huRp8dJnw5G1RnnG2NXbhgTVQL7_5J-ANBbXqf</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Wang, Jiamei</creator><creator>Su, Haozhan</creator><creator>Chen, Kai</creator><creator>Du, Donghai</creator><creator>Zhang, Lefu</creator><creator>Sun, Yongduo</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202001</creationdate><title>Corrosion fatigue crack growth behavior of alloy 52 M in high-temperature water</title><author>Wang, Jiamei ; Su, Haozhan ; Chen, Kai ; Du, Donghai ; Zhang, Lefu ; Sun, Yongduo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-b100101a298c19b33a410c0f7d4fa91a85b9744c70e9946c6aa307800739938c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloy 52 M</topic><topic>Corrosion</topic><topic>Corrosion fatigue</topic><topic>Crack growth rate</topic><topic>Crack propagation</topic><topic>Dendritic branching</topic><topic>Dissolved oxygen</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>Growth rate</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Light water reactor</topic><topic>Nickel base alloys</topic><topic>Organic chemistry</topic><topic>Oxygenation</topic><topic>Stress corrosion cracking</topic><topic>Weld metal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiamei</creatorcontrib><creatorcontrib>Su, Haozhan</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Du, Donghai</creatorcontrib><creatorcontrib>Zhang, Lefu</creatorcontrib><creatorcontrib>Sun, Yongduo</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiamei</au><au>Su, Haozhan</au><au>Chen, Kai</au><au>Du, Donghai</au><au>Zhang, Lefu</au><au>Sun, Yongduo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion fatigue crack growth behavior of alloy 52 M in high-temperature water</atitle><jtitle>Journal of nuclear materials</jtitle><date>2020-01</date><risdate>2020</risdate><volume>528</volume><spage>151848</spage><pages>151848-</pages><artnum>151848</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>The corrosion fatigue (CF) crack growth behavior of Alloy 52 M in high temperature water was investigated in various water chemistries with dissolved oxygen (DO), dissolved hydrogen (DH) or Ar. The experimental results indicated that at higher load ratio (R), the CF crack growth rates (CGRs) in oxygenated water was slightly higher than Ar deaerated water, while under lower R, the relationship was reversed. Micro-characterization of the crack paths and fracture surfaces revealed that severe crack branching and localized inter-dendritic cracking occurred in oxygenated water, while relatively straight transgranular cracking developed in hydrogen and Ar deaerated water. Minor environmental enhancement of CGRs for Alloy 52 M weld metal was detected in oxygenated water but no environmental enhancement of CGRs was detected in hydrogen or Ar deaerated water.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2019.151848</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2020-01, Vol.528, p.151848, Article 151848
issn 0022-3115
1873-4820
language eng
recordid cdi_proquest_journals_2334202691
source Elsevier ScienceDirect Journals Complete
subjects Alloy 52 M
Corrosion
Corrosion fatigue
Crack growth rate
Crack propagation
Dendritic branching
Dissolved oxygen
Fatigue
Fatigue failure
Fracture mechanics
Fracture surfaces
Growth rate
High temperature
Hydrogen
Light water reactor
Nickel base alloys
Organic chemistry
Oxygenation
Stress corrosion cracking
Weld metal
title Corrosion fatigue crack growth behavior of alloy 52 M in high-temperature water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20fatigue%20crack%20growth%20behavior%20of%20alloy%2052%E2%80%AFM%20in%20high-temperature%20water&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Wang,%20Jiamei&rft.date=2020-01&rft.volume=528&rft.spage=151848&rft.pages=151848-&rft.artnum=151848&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2019.151848&rft_dat=%3Cproquest_cross%3E2334202691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334202691&rft_id=info:pmid/&rft_els_id=S0022311519307822&rfr_iscdi=true