Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics
The physical and chemical properties evolution of soot particles was studied by ReaxFF MD simulation. The dimerization of PAHs, nucleation and coagulation, and graphitization from hydrocarbons to the final soot nanoparticle were investigated, and the chemical effects of the hydrogen addition on the...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2020-02, Vol.262, p.116677, Article 116677 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 116677 |
container_title | Fuel (Guildford) |
container_volume | 262 |
creator | Zhao, Jie Lin, Yuyu Huang, Kai Gu, Mingyan Lu, Kun Chen, Ping Wang, Yang Zhu, Bencheng |
description | The physical and chemical properties evolution of soot particles was studied by ReaxFF MD simulation. The dimerization of PAHs, nucleation and coagulation, and graphitization from hydrocarbons to the final soot nanoparticle were investigated, and the chemical effects of the hydrogen addition on the formation mechanism of primary soot nanoparticle was explored by considering important polycyclic aromatic hydrocarbons (PAHs) in ethylene flames under high temperatures. The results obtained reveal that, in the first stage, the activated aliphatic hydrocarbons mainly grow into a large ring through the chain growth reactions, and then gradually form PAH-like molecules with inner ring bridging instead of directly generating the five or six-carbon ring structures. Hydrogenation effectively inhibited the soot nanoparticle nucleation at all stages. Due to a large number of vinyl and acryl groups attacked by the hydrogen to decarbonize and produce methane, a rapid decrease of the formation and growth rate of the PAHs was observed. With the increase of hydrogen, the nucleation and surface growth rate of soot particles are slowed down due to lose activity. |
doi_str_mv | 10.1016/j.fuel.2019.116677 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2334199321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236119320319</els_id><sourcerecordid>2334199321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-dc5125932526c0869656a788fa75c0eb2d3b2fe4f723a1954790eb1ef8abdfeb3</originalsourceid><addsrcrecordid>eNp9kMtqHDEQRUWIwRMnP-CVIOue6DGSuiEbYzKOwRBI4rVQSyVbQ09rrIdJ_300aa-zqirVvbfEQeiaki0lVH45bH2FacsIHbaUSqnUO7ShveKdooK_RxvSVB3jkl6iDzkfCCGqF7sNqr9KdQuOM84xFgyvcaoltLHODhJ2wXtIMBf8vLgUn2DGxrnwT2HjvHYZm7YPT8-4wPEEyZSaAI8L_gnmz36Pj3ECWyfT4pbZHIPNH9GFN1OGT2_1Cj3uv_2-_d49_Li7v7156CyXonTOCsrEwJlg0pJeDlJIo_reGyUsgZE5PjIPO68YN3QQOzW0Vwq-N6PzMPIr9HnNPaX4UiEXfYg1ze2kZpzv6NCyaVOxVWVTzDmB16cUjiYtmhJ9xqsP-oxXn_HqFW8zfV1N0P7_GiDpbAPMFlxIYIt2MfzP_hciqIXV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334199321</pqid></control><display><type>article</type><title>Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics</title><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Jie ; Lin, Yuyu ; Huang, Kai ; Gu, Mingyan ; Lu, Kun ; Chen, Ping ; Wang, Yang ; Zhu, Bencheng</creator><creatorcontrib>Zhao, Jie ; Lin, Yuyu ; Huang, Kai ; Gu, Mingyan ; Lu, Kun ; Chen, Ping ; Wang, Yang ; Zhu, Bencheng</creatorcontrib><description>The physical and chemical properties evolution of soot particles was studied by ReaxFF MD simulation. The dimerization of PAHs, nucleation and coagulation, and graphitization from hydrocarbons to the final soot nanoparticle were investigated, and the chemical effects of the hydrogen addition on the formation mechanism of primary soot nanoparticle was explored by considering important polycyclic aromatic hydrocarbons (PAHs) in ethylene flames under high temperatures. The results obtained reveal that, in the first stage, the activated aliphatic hydrocarbons mainly grow into a large ring through the chain growth reactions, and then gradually form PAH-like molecules with inner ring bridging instead of directly generating the five or six-carbon ring structures. Hydrogenation effectively inhibited the soot nanoparticle nucleation at all stages. Due to a large number of vinyl and acryl groups attacked by the hydrogen to decarbonize and produce methane, a rapid decrease of the formation and growth rate of the PAHs was observed. With the increase of hydrogen, the nucleation and surface growth rate of soot particles are slowed down due to lose activity.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2019.116677</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aliphatic hydrocarbons ; Chemical attack ; Chemical effects ; Chemical properties ; Coagulation ; Decarburizing ; Dimerization ; Evolution ; Graphitization ; Growth rate ; High temperature ; Hydrocarbons ; Hydrogen ; Hydrogen storage ; Hydrogenation ; Molecular dynamics ; Nanoparticles ; Nucleation ; Organic chemistry ; Polycyclic aromatic hydrocarbons ; ReaxFF MD simulation ; Ring structures ; Soot ; Soot nanoparticle formation ; Surface growth rate</subject><ispartof>Fuel (Guildford), 2020-02, Vol.262, p.116677, Article 116677</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Feb 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-dc5125932526c0869656a788fa75c0eb2d3b2fe4f723a1954790eb1ef8abdfeb3</citedby><cites>FETCH-LOGICAL-c365t-dc5125932526c0869656a788fa75c0eb2d3b2fe4f723a1954790eb1ef8abdfeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236119320319$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Lin, Yuyu</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Gu, Mingyan</creatorcontrib><creatorcontrib>Lu, Kun</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Zhu, Bencheng</creatorcontrib><title>Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics</title><title>Fuel (Guildford)</title><description>The physical and chemical properties evolution of soot particles was studied by ReaxFF MD simulation. The dimerization of PAHs, nucleation and coagulation, and graphitization from hydrocarbons to the final soot nanoparticle were investigated, and the chemical effects of the hydrogen addition on the formation mechanism of primary soot nanoparticle was explored by considering important polycyclic aromatic hydrocarbons (PAHs) in ethylene flames under high temperatures. The results obtained reveal that, in the first stage, the activated aliphatic hydrocarbons mainly grow into a large ring through the chain growth reactions, and then gradually form PAH-like molecules with inner ring bridging instead of directly generating the five or six-carbon ring structures. Hydrogenation effectively inhibited the soot nanoparticle nucleation at all stages. Due to a large number of vinyl and acryl groups attacked by the hydrogen to decarbonize and produce methane, a rapid decrease of the formation and growth rate of the PAHs was observed. With the increase of hydrogen, the nucleation and surface growth rate of soot particles are slowed down due to lose activity.</description><subject>Aliphatic hydrocarbons</subject><subject>Chemical attack</subject><subject>Chemical effects</subject><subject>Chemical properties</subject><subject>Coagulation</subject><subject>Decarburizing</subject><subject>Dimerization</subject><subject>Evolution</subject><subject>Graphitization</subject><subject>Growth rate</subject><subject>High temperature</subject><subject>Hydrocarbons</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Molecular dynamics</subject><subject>Nanoparticles</subject><subject>Nucleation</subject><subject>Organic chemistry</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>ReaxFF MD simulation</subject><subject>Ring structures</subject><subject>Soot</subject><subject>Soot nanoparticle formation</subject><subject>Surface growth rate</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqHDEQRUWIwRMnP-CVIOue6DGSuiEbYzKOwRBI4rVQSyVbQ09rrIdJ_300aa-zqirVvbfEQeiaki0lVH45bH2FacsIHbaUSqnUO7ShveKdooK_RxvSVB3jkl6iDzkfCCGqF7sNqr9KdQuOM84xFgyvcaoltLHODhJ2wXtIMBf8vLgUn2DGxrnwT2HjvHYZm7YPT8-4wPEEyZSaAI8L_gnmz36Pj3ECWyfT4pbZHIPNH9GFN1OGT2_1Cj3uv_2-_d49_Li7v7156CyXonTOCsrEwJlg0pJeDlJIo_reGyUsgZE5PjIPO68YN3QQOzW0Vwq-N6PzMPIr9HnNPaX4UiEXfYg1ze2kZpzv6NCyaVOxVWVTzDmB16cUjiYtmhJ9xqsP-oxXn_HqFW8zfV1N0P7_GiDpbAPMFlxIYIt2MfzP_hciqIXV</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Zhao, Jie</creator><creator>Lin, Yuyu</creator><creator>Huang, Kai</creator><creator>Gu, Mingyan</creator><creator>Lu, Kun</creator><creator>Chen, Ping</creator><creator>Wang, Yang</creator><creator>Zhu, Bencheng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20200215</creationdate><title>Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics</title><author>Zhao, Jie ; Lin, Yuyu ; Huang, Kai ; Gu, Mingyan ; Lu, Kun ; Chen, Ping ; Wang, Yang ; Zhu, Bencheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-dc5125932526c0869656a788fa75c0eb2d3b2fe4f723a1954790eb1ef8abdfeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aliphatic hydrocarbons</topic><topic>Chemical attack</topic><topic>Chemical effects</topic><topic>Chemical properties</topic><topic>Coagulation</topic><topic>Decarburizing</topic><topic>Dimerization</topic><topic>Evolution</topic><topic>Graphitization</topic><topic>Growth rate</topic><topic>High temperature</topic><topic>Hydrocarbons</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Molecular dynamics</topic><topic>Nanoparticles</topic><topic>Nucleation</topic><topic>Organic chemistry</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>ReaxFF MD simulation</topic><topic>Ring structures</topic><topic>Soot</topic><topic>Soot nanoparticle formation</topic><topic>Surface growth rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Lin, Yuyu</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Gu, Mingyan</creatorcontrib><creatorcontrib>Lu, Kun</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Zhu, Bencheng</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jie</au><au>Lin, Yuyu</au><au>Huang, Kai</au><au>Gu, Mingyan</au><au>Lu, Kun</au><au>Chen, Ping</au><au>Wang, Yang</au><au>Zhu, Bencheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics</atitle><jtitle>Fuel (Guildford)</jtitle><date>2020-02-15</date><risdate>2020</risdate><volume>262</volume><spage>116677</spage><pages>116677-</pages><artnum>116677</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>The physical and chemical properties evolution of soot particles was studied by ReaxFF MD simulation. The dimerization of PAHs, nucleation and coagulation, and graphitization from hydrocarbons to the final soot nanoparticle were investigated, and the chemical effects of the hydrogen addition on the formation mechanism of primary soot nanoparticle was explored by considering important polycyclic aromatic hydrocarbons (PAHs) in ethylene flames under high temperatures. The results obtained reveal that, in the first stage, the activated aliphatic hydrocarbons mainly grow into a large ring through the chain growth reactions, and then gradually form PAH-like molecules with inner ring bridging instead of directly generating the five or six-carbon ring structures. Hydrogenation effectively inhibited the soot nanoparticle nucleation at all stages. Due to a large number of vinyl and acryl groups attacked by the hydrogen to decarbonize and produce methane, a rapid decrease of the formation and growth rate of the PAHs was observed. With the increase of hydrogen, the nucleation and surface growth rate of soot particles are slowed down due to lose activity.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2019.116677</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2020-02, Vol.262, p.116677, Article 116677 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2334199321 |
source | Elsevier ScienceDirect Journals |
subjects | Aliphatic hydrocarbons Chemical attack Chemical effects Chemical properties Coagulation Decarburizing Dimerization Evolution Graphitization Growth rate High temperature Hydrocarbons Hydrogen Hydrogen storage Hydrogenation Molecular dynamics Nanoparticles Nucleation Organic chemistry Polycyclic aromatic hydrocarbons ReaxFF MD simulation Ring structures Soot Soot nanoparticle formation Surface growth rate |
title | Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20soot%20evolution%20under%20different%20hydrogen%20addition%20conditions%20at%20high%20temperature%20by%20ReaxFF%20molecular%20dynamics&rft.jtitle=Fuel%20(Guildford)&rft.au=Zhao,%20Jie&rft.date=2020-02-15&rft.volume=262&rft.spage=116677&rft.pages=116677-&rft.artnum=116677&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2019.116677&rft_dat=%3Cproquest_cross%3E2334199321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334199321&rft_id=info:pmid/&rft_els_id=S0016236119320319&rfr_iscdi=true |