Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics

The physical and chemical properties evolution of soot particles was studied by ReaxFF MD simulation. The dimerization of PAHs, nucleation and coagulation, and graphitization from hydrocarbons to the final soot nanoparticle were investigated, and the chemical effects of the hydrogen addition on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2020-02, Vol.262, p.116677, Article 116677
Hauptverfasser: Zhao, Jie, Lin, Yuyu, Huang, Kai, Gu, Mingyan, Lu, Kun, Chen, Ping, Wang, Yang, Zhu, Bencheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116677
container_title Fuel (Guildford)
container_volume 262
creator Zhao, Jie
Lin, Yuyu
Huang, Kai
Gu, Mingyan
Lu, Kun
Chen, Ping
Wang, Yang
Zhu, Bencheng
description The physical and chemical properties evolution of soot particles was studied by ReaxFF MD simulation. The dimerization of PAHs, nucleation and coagulation, and graphitization from hydrocarbons to the final soot nanoparticle were investigated, and the chemical effects of the hydrogen addition on the formation mechanism of primary soot nanoparticle was explored by considering important polycyclic aromatic hydrocarbons (PAHs) in ethylene flames under high temperatures. The results obtained reveal that, in the first stage, the activated aliphatic hydrocarbons mainly grow into a large ring through the chain growth reactions, and then gradually form PAH-like molecules with inner ring bridging instead of directly generating the five or six-carbon ring structures. Hydrogenation effectively inhibited the soot nanoparticle nucleation at all stages. Due to a large number of vinyl and acryl groups attacked by the hydrogen to decarbonize and produce methane, a rapid decrease of the formation and growth rate of the PAHs was observed. With the increase of hydrogen, the nucleation and surface growth rate of soot particles are slowed down due to lose activity.
doi_str_mv 10.1016/j.fuel.2019.116677
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2334199321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236119320319</els_id><sourcerecordid>2334199321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-dc5125932526c0869656a788fa75c0eb2d3b2fe4f723a1954790eb1ef8abdfeb3</originalsourceid><addsrcrecordid>eNp9kMtqHDEQRUWIwRMnP-CVIOue6DGSuiEbYzKOwRBI4rVQSyVbQ09rrIdJ_300aa-zqirVvbfEQeiaki0lVH45bH2FacsIHbaUSqnUO7ShveKdooK_RxvSVB3jkl6iDzkfCCGqF7sNqr9KdQuOM84xFgyvcaoltLHODhJ2wXtIMBf8vLgUn2DGxrnwT2HjvHYZm7YPT8-4wPEEyZSaAI8L_gnmz36Pj3ECWyfT4pbZHIPNH9GFN1OGT2_1Cj3uv_2-_d49_Li7v7156CyXonTOCsrEwJlg0pJeDlJIo_reGyUsgZE5PjIPO68YN3QQOzW0Vwq-N6PzMPIr9HnNPaX4UiEXfYg1ze2kZpzv6NCyaVOxVWVTzDmB16cUjiYtmhJ9xqsP-oxXn_HqFW8zfV1N0P7_GiDpbAPMFlxIYIt2MfzP_hciqIXV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334199321</pqid></control><display><type>article</type><title>Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics</title><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Jie ; Lin, Yuyu ; Huang, Kai ; Gu, Mingyan ; Lu, Kun ; Chen, Ping ; Wang, Yang ; Zhu, Bencheng</creator><creatorcontrib>Zhao, Jie ; Lin, Yuyu ; Huang, Kai ; Gu, Mingyan ; Lu, Kun ; Chen, Ping ; Wang, Yang ; Zhu, Bencheng</creatorcontrib><description>The physical and chemical properties evolution of soot particles was studied by ReaxFF MD simulation. The dimerization of PAHs, nucleation and coagulation, and graphitization from hydrocarbons to the final soot nanoparticle were investigated, and the chemical effects of the hydrogen addition on the formation mechanism of primary soot nanoparticle was explored by considering important polycyclic aromatic hydrocarbons (PAHs) in ethylene flames under high temperatures. The results obtained reveal that, in the first stage, the activated aliphatic hydrocarbons mainly grow into a large ring through the chain growth reactions, and then gradually form PAH-like molecules with inner ring bridging instead of directly generating the five or six-carbon ring structures. Hydrogenation effectively inhibited the soot nanoparticle nucleation at all stages. Due to a large number of vinyl and acryl groups attacked by the hydrogen to decarbonize and produce methane, a rapid decrease of the formation and growth rate of the PAHs was observed. With the increase of hydrogen, the nucleation and surface growth rate of soot particles are slowed down due to lose activity.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2019.116677</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aliphatic hydrocarbons ; Chemical attack ; Chemical effects ; Chemical properties ; Coagulation ; Decarburizing ; Dimerization ; Evolution ; Graphitization ; Growth rate ; High temperature ; Hydrocarbons ; Hydrogen ; Hydrogen storage ; Hydrogenation ; Molecular dynamics ; Nanoparticles ; Nucleation ; Organic chemistry ; Polycyclic aromatic hydrocarbons ; ReaxFF MD simulation ; Ring structures ; Soot ; Soot nanoparticle formation ; Surface growth rate</subject><ispartof>Fuel (Guildford), 2020-02, Vol.262, p.116677, Article 116677</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Feb 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-dc5125932526c0869656a788fa75c0eb2d3b2fe4f723a1954790eb1ef8abdfeb3</citedby><cites>FETCH-LOGICAL-c365t-dc5125932526c0869656a788fa75c0eb2d3b2fe4f723a1954790eb1ef8abdfeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236119320319$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Lin, Yuyu</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Gu, Mingyan</creatorcontrib><creatorcontrib>Lu, Kun</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Zhu, Bencheng</creatorcontrib><title>Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics</title><title>Fuel (Guildford)</title><description>The physical and chemical properties evolution of soot particles was studied by ReaxFF MD simulation. The dimerization of PAHs, nucleation and coagulation, and graphitization from hydrocarbons to the final soot nanoparticle were investigated, and the chemical effects of the hydrogen addition on the formation mechanism of primary soot nanoparticle was explored by considering important polycyclic aromatic hydrocarbons (PAHs) in ethylene flames under high temperatures. The results obtained reveal that, in the first stage, the activated aliphatic hydrocarbons mainly grow into a large ring through the chain growth reactions, and then gradually form PAH-like molecules with inner ring bridging instead of directly generating the five or six-carbon ring structures. Hydrogenation effectively inhibited the soot nanoparticle nucleation at all stages. Due to a large number of vinyl and acryl groups attacked by the hydrogen to decarbonize and produce methane, a rapid decrease of the formation and growth rate of the PAHs was observed. With the increase of hydrogen, the nucleation and surface growth rate of soot particles are slowed down due to lose activity.</description><subject>Aliphatic hydrocarbons</subject><subject>Chemical attack</subject><subject>Chemical effects</subject><subject>Chemical properties</subject><subject>Coagulation</subject><subject>Decarburizing</subject><subject>Dimerization</subject><subject>Evolution</subject><subject>Graphitization</subject><subject>Growth rate</subject><subject>High temperature</subject><subject>Hydrocarbons</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Molecular dynamics</subject><subject>Nanoparticles</subject><subject>Nucleation</subject><subject>Organic chemistry</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>ReaxFF MD simulation</subject><subject>Ring structures</subject><subject>Soot</subject><subject>Soot nanoparticle formation</subject><subject>Surface growth rate</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqHDEQRUWIwRMnP-CVIOue6DGSuiEbYzKOwRBI4rVQSyVbQ09rrIdJ_300aa-zqirVvbfEQeiaki0lVH45bH2FacsIHbaUSqnUO7ShveKdooK_RxvSVB3jkl6iDzkfCCGqF7sNqr9KdQuOM84xFgyvcaoltLHODhJ2wXtIMBf8vLgUn2DGxrnwT2HjvHYZm7YPT8-4wPEEyZSaAI8L_gnmz36Pj3ECWyfT4pbZHIPNH9GFN1OGT2_1Cj3uv_2-_d49_Li7v7156CyXonTOCsrEwJlg0pJeDlJIo_reGyUsgZE5PjIPO68YN3QQOzW0Vwq-N6PzMPIr9HnNPaX4UiEXfYg1ze2kZpzv6NCyaVOxVWVTzDmB16cUjiYtmhJ9xqsP-oxXn_HqFW8zfV1N0P7_GiDpbAPMFlxIYIt2MfzP_hciqIXV</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Zhao, Jie</creator><creator>Lin, Yuyu</creator><creator>Huang, Kai</creator><creator>Gu, Mingyan</creator><creator>Lu, Kun</creator><creator>Chen, Ping</creator><creator>Wang, Yang</creator><creator>Zhu, Bencheng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20200215</creationdate><title>Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics</title><author>Zhao, Jie ; Lin, Yuyu ; Huang, Kai ; Gu, Mingyan ; Lu, Kun ; Chen, Ping ; Wang, Yang ; Zhu, Bencheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-dc5125932526c0869656a788fa75c0eb2d3b2fe4f723a1954790eb1ef8abdfeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aliphatic hydrocarbons</topic><topic>Chemical attack</topic><topic>Chemical effects</topic><topic>Chemical properties</topic><topic>Coagulation</topic><topic>Decarburizing</topic><topic>Dimerization</topic><topic>Evolution</topic><topic>Graphitization</topic><topic>Growth rate</topic><topic>High temperature</topic><topic>Hydrocarbons</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Molecular dynamics</topic><topic>Nanoparticles</topic><topic>Nucleation</topic><topic>Organic chemistry</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>ReaxFF MD simulation</topic><topic>Ring structures</topic><topic>Soot</topic><topic>Soot nanoparticle formation</topic><topic>Surface growth rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Lin, Yuyu</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Gu, Mingyan</creatorcontrib><creatorcontrib>Lu, Kun</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Zhu, Bencheng</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jie</au><au>Lin, Yuyu</au><au>Huang, Kai</au><au>Gu, Mingyan</au><au>Lu, Kun</au><au>Chen, Ping</au><au>Wang, Yang</au><au>Zhu, Bencheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics</atitle><jtitle>Fuel (Guildford)</jtitle><date>2020-02-15</date><risdate>2020</risdate><volume>262</volume><spage>116677</spage><pages>116677-</pages><artnum>116677</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>The physical and chemical properties evolution of soot particles was studied by ReaxFF MD simulation. The dimerization of PAHs, nucleation and coagulation, and graphitization from hydrocarbons to the final soot nanoparticle were investigated, and the chemical effects of the hydrogen addition on the formation mechanism of primary soot nanoparticle was explored by considering important polycyclic aromatic hydrocarbons (PAHs) in ethylene flames under high temperatures. The results obtained reveal that, in the first stage, the activated aliphatic hydrocarbons mainly grow into a large ring through the chain growth reactions, and then gradually form PAH-like molecules with inner ring bridging instead of directly generating the five or six-carbon ring structures. Hydrogenation effectively inhibited the soot nanoparticle nucleation at all stages. Due to a large number of vinyl and acryl groups attacked by the hydrogen to decarbonize and produce methane, a rapid decrease of the formation and growth rate of the PAHs was observed. With the increase of hydrogen, the nucleation and surface growth rate of soot particles are slowed down due to lose activity.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2019.116677</doi></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2020-02, Vol.262, p.116677, Article 116677
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2334199321
source Elsevier ScienceDirect Journals
subjects Aliphatic hydrocarbons
Chemical attack
Chemical effects
Chemical properties
Coagulation
Decarburizing
Dimerization
Evolution
Graphitization
Growth rate
High temperature
Hydrocarbons
Hydrogen
Hydrogen storage
Hydrogenation
Molecular dynamics
Nanoparticles
Nucleation
Organic chemistry
Polycyclic aromatic hydrocarbons
ReaxFF MD simulation
Ring structures
Soot
Soot nanoparticle formation
Surface growth rate
title Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20soot%20evolution%20under%20different%20hydrogen%20addition%20conditions%20at%20high%20temperature%20by%20ReaxFF%20molecular%20dynamics&rft.jtitle=Fuel%20(Guildford)&rft.au=Zhao,%20Jie&rft.date=2020-02-15&rft.volume=262&rft.spage=116677&rft.pages=116677-&rft.artnum=116677&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2019.116677&rft_dat=%3Cproquest_cross%3E2334199321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334199321&rft_id=info:pmid/&rft_els_id=S0016236119320319&rfr_iscdi=true