Preparation and characterization of poly (N-methylol acrylamide)/polyethylene glycol composite phase change materials for thermal energy storage
The cross-linked poly (N-methylol acrylamide)/polyethylene glycol (PN-MA/PEG) with an interpenetrating polymer network (IPN) was prepared by emulsion polymerization as composite phase change material (CPCM). N, N′-methylene bisacrylamide (MBA) was used for crosslinking agent. The prepared CPCM was c...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2020-02, Vol.205, p.110248, Article 110248 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110248 |
container_title | Solar energy materials and solar cells |
container_volume | 205 |
creator | Zou, Xinquan Zhou, Weidong Shi, Junfeng Ye, Yongming Zhao, Yunhe Zhang, Hong Liu, Yuanfa Yu, Yue Guo, Jing |
description | The cross-linked poly (N-methylol acrylamide)/polyethylene glycol (PN-MA/PEG) with an interpenetrating polymer network (IPN) was prepared by emulsion polymerization as composite phase change material (CPCM). N, N′-methylene bisacrylamide (MBA) was used for crosslinking agent. The prepared CPCM was characterized by Fourier Transform Infrared (FT-IR) spectroscopy, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), thermal cycle test, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). FT-IR results stated that there is no chemical interaction between PEG and PN-MA. XRD results indicated that the introduction of PN-MA did not change the crystal type of PEG. PEG still exhibits crystallization behavior under the constraints of cross-linked PN-MA. The DSC results indicated that CPCM melts at 26.24 °C with a latent heat of 106.5 J/g and solidifies at 32.56 °C with a latent heat of 104.9 J/g. The TGA results indicated that the CPCM has good thermal stability and is suitable for thermal energy storage application. The results of thermal cycle test indicated that the macroscopic morphology and latent heat of CPCM were almost unchanged after 40 thermal cycles. SEM and TEM results indicated that the microscopic morphology of CPCM was spherical and the particle size distribution was around 145 nm. |
doi_str_mv | 10.1016/j.solmat.2019.110248 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2333945366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092702481930577X</els_id><sourcerecordid>2333945366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-91b4c2bb70cf2e7a5d307b4cd4ee9d502a09b1d9944efaf698b7799a00a440de3</originalsourceid><addsrcrecordid>eNp9kM1u3CAUhVGUSplM8wZZIGXTLjxzsRl72FSqRvmToraLdo0wXHsY2cYFppL7FHnk4LjrrhDnnnMufITcMtgwYOX2tAmu61Xc5MDEhjHI-f6CrNi-EllRiP0lWYHIq2zWr8h1CCcAyMuCr8jrD4-j8ipaN1A1GKqP6aYjevt3EV1DR9dN9NO3rMd4nDrXUaX91KneGvy8nYfvOg5I227Saa5dP7pgI9LxqALOpUOLND0x9aou0MZ5Go_oe9XRlPPtREN0XrX4kXxokgNv_p1r8uvh_ufhKXv5_vh8-PqSaQ4QM8FqrvO6rkA3OVZqZwqokmQ4ojA7yBWImhkhOMdGNaXY11UlhAJQnIPBYk3ult7Ru99nDFGe3NkPaaXMiwSN74qyTC6-uLR3IXhs5Ohtr_wkGciZvTzJhb2c2cuFfYp9WWKYfvDHopdBWxw0GutRR2mc_X_BG8XXkzk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333945366</pqid></control><display><type>article</type><title>Preparation and characterization of poly (N-methylol acrylamide)/polyethylene glycol composite phase change materials for thermal energy storage</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zou, Xinquan ; Zhou, Weidong ; Shi, Junfeng ; Ye, Yongming ; Zhao, Yunhe ; Zhang, Hong ; Liu, Yuanfa ; Yu, Yue ; Guo, Jing</creator><creatorcontrib>Zou, Xinquan ; Zhou, Weidong ; Shi, Junfeng ; Ye, Yongming ; Zhao, Yunhe ; Zhang, Hong ; Liu, Yuanfa ; Yu, Yue ; Guo, Jing</creatorcontrib><description>The cross-linked poly (N-methylol acrylamide)/polyethylene glycol (PN-MA/PEG) with an interpenetrating polymer network (IPN) was prepared by emulsion polymerization as composite phase change material (CPCM). N, N′-methylene bisacrylamide (MBA) was used for crosslinking agent. The prepared CPCM was characterized by Fourier Transform Infrared (FT-IR) spectroscopy, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), thermal cycle test, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). FT-IR results stated that there is no chemical interaction between PEG and PN-MA. XRD results indicated that the introduction of PN-MA did not change the crystal type of PEG. PEG still exhibits crystallization behavior under the constraints of cross-linked PN-MA. The DSC results indicated that CPCM melts at 26.24 °C with a latent heat of 106.5 J/g and solidifies at 32.56 °C with a latent heat of 104.9 J/g. The TGA results indicated that the CPCM has good thermal stability and is suitable for thermal energy storage application. The results of thermal cycle test indicated that the macroscopic morphology and latent heat of CPCM were almost unchanged after 40 thermal cycles. SEM and TEM results indicated that the microscopic morphology of CPCM was spherical and the particle size distribution was around 145 nm.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2019.110248</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acrylamide ; Calorimetry ; Composite materials ; Composite phase change material ; Crosslinking ; Crystallization ; Differential scanning calorimetry ; Emulsion polymerization ; Energy storage ; Fourier analysis ; Fourier transforms ; Heat ; Infrared analysis ; Infrared spectroscopy ; Interpenetrating networks ; Interpenetrating polymer network ; Latent heat ; Methylene bisacrylamide ; Morphology ; Organic chemistry ; Particle size distribution ; Phase change materials ; Poly (N-methylol acrylamide) ; Polyethylene glycol ; Polymerization ; Scanning electron microscopy ; Size distribution ; Thermal energy ; Thermal stability ; Thermogravimetric analysis ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Solar energy materials and solar cells, 2020-02, Vol.205, p.110248, Article 110248</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-91b4c2bb70cf2e7a5d307b4cd4ee9d502a09b1d9944efaf698b7799a00a440de3</citedby><cites>FETCH-LOGICAL-c400t-91b4c2bb70cf2e7a5d307b4cd4ee9d502a09b1d9944efaf698b7799a00a440de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2019.110248$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zou, Xinquan</creatorcontrib><creatorcontrib>Zhou, Weidong</creatorcontrib><creatorcontrib>Shi, Junfeng</creatorcontrib><creatorcontrib>Ye, Yongming</creatorcontrib><creatorcontrib>Zhao, Yunhe</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Liu, Yuanfa</creatorcontrib><creatorcontrib>Yu, Yue</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><title>Preparation and characterization of poly (N-methylol acrylamide)/polyethylene glycol composite phase change materials for thermal energy storage</title><title>Solar energy materials and solar cells</title><description>The cross-linked poly (N-methylol acrylamide)/polyethylene glycol (PN-MA/PEG) with an interpenetrating polymer network (IPN) was prepared by emulsion polymerization as composite phase change material (CPCM). N, N′-methylene bisacrylamide (MBA) was used for crosslinking agent. The prepared CPCM was characterized by Fourier Transform Infrared (FT-IR) spectroscopy, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), thermal cycle test, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). FT-IR results stated that there is no chemical interaction between PEG and PN-MA. XRD results indicated that the introduction of PN-MA did not change the crystal type of PEG. PEG still exhibits crystallization behavior under the constraints of cross-linked PN-MA. The DSC results indicated that CPCM melts at 26.24 °C with a latent heat of 106.5 J/g and solidifies at 32.56 °C with a latent heat of 104.9 J/g. The TGA results indicated that the CPCM has good thermal stability and is suitable for thermal energy storage application. The results of thermal cycle test indicated that the macroscopic morphology and latent heat of CPCM were almost unchanged after 40 thermal cycles. SEM and TEM results indicated that the microscopic morphology of CPCM was spherical and the particle size distribution was around 145 nm.</description><subject>Acrylamide</subject><subject>Calorimetry</subject><subject>Composite materials</subject><subject>Composite phase change material</subject><subject>Crosslinking</subject><subject>Crystallization</subject><subject>Differential scanning calorimetry</subject><subject>Emulsion polymerization</subject><subject>Energy storage</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Heat</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Interpenetrating networks</subject><subject>Interpenetrating polymer network</subject><subject>Latent heat</subject><subject>Methylene bisacrylamide</subject><subject>Morphology</subject><subject>Organic chemistry</subject><subject>Particle size distribution</subject><subject>Phase change materials</subject><subject>Poly (N-methylol acrylamide)</subject><subject>Polyethylene glycol</subject><subject>Polymerization</subject><subject>Scanning electron microscopy</subject><subject>Size distribution</subject><subject>Thermal energy</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u3CAUhVGUSplM8wZZIGXTLjxzsRl72FSqRvmToraLdo0wXHsY2cYFppL7FHnk4LjrrhDnnnMufITcMtgwYOX2tAmu61Xc5MDEhjHI-f6CrNi-EllRiP0lWYHIq2zWr8h1CCcAyMuCr8jrD4-j8ipaN1A1GKqP6aYjevt3EV1DR9dN9NO3rMd4nDrXUaX91KneGvy8nYfvOg5I227Saa5dP7pgI9LxqALOpUOLND0x9aou0MZ5Go_oe9XRlPPtREN0XrX4kXxokgNv_p1r8uvh_ufhKXv5_vh8-PqSaQ4QM8FqrvO6rkA3OVZqZwqokmQ4ojA7yBWImhkhOMdGNaXY11UlhAJQnIPBYk3ult7Ru99nDFGe3NkPaaXMiwSN74qyTC6-uLR3IXhs5Ohtr_wkGciZvTzJhb2c2cuFfYp9WWKYfvDHopdBWxw0GutRR2mc_X_BG8XXkzk</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Zou, Xinquan</creator><creator>Zhou, Weidong</creator><creator>Shi, Junfeng</creator><creator>Ye, Yongming</creator><creator>Zhao, Yunhe</creator><creator>Zhang, Hong</creator><creator>Liu, Yuanfa</creator><creator>Yu, Yue</creator><creator>Guo, Jing</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202002</creationdate><title>Preparation and characterization of poly (N-methylol acrylamide)/polyethylene glycol composite phase change materials for thermal energy storage</title><author>Zou, Xinquan ; Zhou, Weidong ; Shi, Junfeng ; Ye, Yongming ; Zhao, Yunhe ; Zhang, Hong ; Liu, Yuanfa ; Yu, Yue ; Guo, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-91b4c2bb70cf2e7a5d307b4cd4ee9d502a09b1d9944efaf698b7799a00a440de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acrylamide</topic><topic>Calorimetry</topic><topic>Composite materials</topic><topic>Composite phase change material</topic><topic>Crosslinking</topic><topic>Crystallization</topic><topic>Differential scanning calorimetry</topic><topic>Emulsion polymerization</topic><topic>Energy storage</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Heat</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Interpenetrating networks</topic><topic>Interpenetrating polymer network</topic><topic>Latent heat</topic><topic>Methylene bisacrylamide</topic><topic>Morphology</topic><topic>Organic chemistry</topic><topic>Particle size distribution</topic><topic>Phase change materials</topic><topic>Poly (N-methylol acrylamide)</topic><topic>Polyethylene glycol</topic><topic>Polymerization</topic><topic>Scanning electron microscopy</topic><topic>Size distribution</topic><topic>Thermal energy</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Xinquan</creatorcontrib><creatorcontrib>Zhou, Weidong</creatorcontrib><creatorcontrib>Shi, Junfeng</creatorcontrib><creatorcontrib>Ye, Yongming</creatorcontrib><creatorcontrib>Zhao, Yunhe</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Liu, Yuanfa</creatorcontrib><creatorcontrib>Yu, Yue</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Xinquan</au><au>Zhou, Weidong</au><au>Shi, Junfeng</au><au>Ye, Yongming</au><au>Zhao, Yunhe</au><au>Zhang, Hong</au><au>Liu, Yuanfa</au><au>Yu, Yue</au><au>Guo, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and characterization of poly (N-methylol acrylamide)/polyethylene glycol composite phase change materials for thermal energy storage</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2020-02</date><risdate>2020</risdate><volume>205</volume><spage>110248</spage><pages>110248-</pages><artnum>110248</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The cross-linked poly (N-methylol acrylamide)/polyethylene glycol (PN-MA/PEG) with an interpenetrating polymer network (IPN) was prepared by emulsion polymerization as composite phase change material (CPCM). N, N′-methylene bisacrylamide (MBA) was used for crosslinking agent. The prepared CPCM was characterized by Fourier Transform Infrared (FT-IR) spectroscopy, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), thermal cycle test, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). FT-IR results stated that there is no chemical interaction between PEG and PN-MA. XRD results indicated that the introduction of PN-MA did not change the crystal type of PEG. PEG still exhibits crystallization behavior under the constraints of cross-linked PN-MA. The DSC results indicated that CPCM melts at 26.24 °C with a latent heat of 106.5 J/g and solidifies at 32.56 °C with a latent heat of 104.9 J/g. The TGA results indicated that the CPCM has good thermal stability and is suitable for thermal energy storage application. The results of thermal cycle test indicated that the macroscopic morphology and latent heat of CPCM were almost unchanged after 40 thermal cycles. SEM and TEM results indicated that the microscopic morphology of CPCM was spherical and the particle size distribution was around 145 nm.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2019.110248</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2020-02, Vol.205, p.110248, Article 110248 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2333945366 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Acrylamide Calorimetry Composite materials Composite phase change material Crosslinking Crystallization Differential scanning calorimetry Emulsion polymerization Energy storage Fourier analysis Fourier transforms Heat Infrared analysis Infrared spectroscopy Interpenetrating networks Interpenetrating polymer network Latent heat Methylene bisacrylamide Morphology Organic chemistry Particle size distribution Phase change materials Poly (N-methylol acrylamide) Polyethylene glycol Polymerization Scanning electron microscopy Size distribution Thermal energy Thermal stability Thermogravimetric analysis Transmission electron microscopy X-ray diffraction |
title | Preparation and characterization of poly (N-methylol acrylamide)/polyethylene glycol composite phase change materials for thermal energy storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20characterization%20of%20poly%20(N-methylol%20acrylamide)/polyethylene%20glycol%20composite%20phase%20change%20materials%20for%20thermal%20energy%20storage&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Zou,%20Xinquan&rft.date=2020-02&rft.volume=205&rft.spage=110248&rft.pages=110248-&rft.artnum=110248&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2019.110248&rft_dat=%3Cproquest_cross%3E2333945366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333945366&rft_id=info:pmid/&rft_els_id=S092702481930577X&rfr_iscdi=true |