Preparation and characterization of poly (N-methylol acrylamide)/polyethylene glycol composite phase change materials for thermal energy storage

The cross-linked poly (N-methylol acrylamide)/polyethylene glycol (PN-MA/PEG) with an interpenetrating polymer network (IPN) was prepared by emulsion polymerization as composite phase change material (CPCM). N, N′-methylene bisacrylamide (MBA) was used for crosslinking agent. The prepared CPCM was c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2020-02, Vol.205, p.110248, Article 110248
Hauptverfasser: Zou, Xinquan, Zhou, Weidong, Shi, Junfeng, Ye, Yongming, Zhao, Yunhe, Zhang, Hong, Liu, Yuanfa, Yu, Yue, Guo, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110248
container_title Solar energy materials and solar cells
container_volume 205
creator Zou, Xinquan
Zhou, Weidong
Shi, Junfeng
Ye, Yongming
Zhao, Yunhe
Zhang, Hong
Liu, Yuanfa
Yu, Yue
Guo, Jing
description The cross-linked poly (N-methylol acrylamide)/polyethylene glycol (PN-MA/PEG) with an interpenetrating polymer network (IPN) was prepared by emulsion polymerization as composite phase change material (CPCM). N, N′-methylene bisacrylamide (MBA) was used for crosslinking agent. The prepared CPCM was characterized by Fourier Transform Infrared (FT-IR) spectroscopy, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), thermal cycle test, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). FT-IR results stated that there is no chemical interaction between PEG and PN-MA. XRD results indicated that the introduction of PN-MA did not change the crystal type of PEG. PEG still exhibits crystallization behavior under the constraints of cross-linked PN-MA. The DSC results indicated that CPCM melts at 26.24 °C with a latent heat of 106.5 J/g and solidifies at 32.56 °C with a latent heat of 104.9 J/g. The TGA results indicated that the CPCM has good thermal stability and is suitable for thermal energy storage application. The results of thermal cycle test indicated that the macroscopic morphology and latent heat of CPCM were almost unchanged after 40 thermal cycles. SEM and TEM results indicated that the microscopic morphology of CPCM was spherical and the particle size distribution was around 145 nm.
doi_str_mv 10.1016/j.solmat.2019.110248
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2333945366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092702481930577X</els_id><sourcerecordid>2333945366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-91b4c2bb70cf2e7a5d307b4cd4ee9d502a09b1d9944efaf698b7799a00a440de3</originalsourceid><addsrcrecordid>eNp9kM1u3CAUhVGUSplM8wZZIGXTLjxzsRl72FSqRvmToraLdo0wXHsY2cYFppL7FHnk4LjrrhDnnnMufITcMtgwYOX2tAmu61Xc5MDEhjHI-f6CrNi-EllRiP0lWYHIq2zWr8h1CCcAyMuCr8jrD4-j8ipaN1A1GKqP6aYjevt3EV1DR9dN9NO3rMd4nDrXUaX91KneGvy8nYfvOg5I227Saa5dP7pgI9LxqALOpUOLND0x9aou0MZ5Go_oe9XRlPPtREN0XrX4kXxokgNv_p1r8uvh_ufhKXv5_vh8-PqSaQ4QM8FqrvO6rkA3OVZqZwqokmQ4ojA7yBWImhkhOMdGNaXY11UlhAJQnIPBYk3ult7Ru99nDFGe3NkPaaXMiwSN74qyTC6-uLR3IXhs5Ohtr_wkGciZvTzJhb2c2cuFfYp9WWKYfvDHopdBWxw0GutRR2mc_X_BG8XXkzk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333945366</pqid></control><display><type>article</type><title>Preparation and characterization of poly (N-methylol acrylamide)/polyethylene glycol composite phase change materials for thermal energy storage</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zou, Xinquan ; Zhou, Weidong ; Shi, Junfeng ; Ye, Yongming ; Zhao, Yunhe ; Zhang, Hong ; Liu, Yuanfa ; Yu, Yue ; Guo, Jing</creator><creatorcontrib>Zou, Xinquan ; Zhou, Weidong ; Shi, Junfeng ; Ye, Yongming ; Zhao, Yunhe ; Zhang, Hong ; Liu, Yuanfa ; Yu, Yue ; Guo, Jing</creatorcontrib><description>The cross-linked poly (N-methylol acrylamide)/polyethylene glycol (PN-MA/PEG) with an interpenetrating polymer network (IPN) was prepared by emulsion polymerization as composite phase change material (CPCM). N, N′-methylene bisacrylamide (MBA) was used for crosslinking agent. The prepared CPCM was characterized by Fourier Transform Infrared (FT-IR) spectroscopy, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), thermal cycle test, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). FT-IR results stated that there is no chemical interaction between PEG and PN-MA. XRD results indicated that the introduction of PN-MA did not change the crystal type of PEG. PEG still exhibits crystallization behavior under the constraints of cross-linked PN-MA. The DSC results indicated that CPCM melts at 26.24 °C with a latent heat of 106.5 J/g and solidifies at 32.56 °C with a latent heat of 104.9 J/g. The TGA results indicated that the CPCM has good thermal stability and is suitable for thermal energy storage application. The results of thermal cycle test indicated that the macroscopic morphology and latent heat of CPCM were almost unchanged after 40 thermal cycles. SEM and TEM results indicated that the microscopic morphology of CPCM was spherical and the particle size distribution was around 145 nm.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2019.110248</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acrylamide ; Calorimetry ; Composite materials ; Composite phase change material ; Crosslinking ; Crystallization ; Differential scanning calorimetry ; Emulsion polymerization ; Energy storage ; Fourier analysis ; Fourier transforms ; Heat ; Infrared analysis ; Infrared spectroscopy ; Interpenetrating networks ; Interpenetrating polymer network ; Latent heat ; Methylene bisacrylamide ; Morphology ; Organic chemistry ; Particle size distribution ; Phase change materials ; Poly (N-methylol acrylamide) ; Polyethylene glycol ; Polymerization ; Scanning electron microscopy ; Size distribution ; Thermal energy ; Thermal stability ; Thermogravimetric analysis ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Solar energy materials and solar cells, 2020-02, Vol.205, p.110248, Article 110248</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-91b4c2bb70cf2e7a5d307b4cd4ee9d502a09b1d9944efaf698b7799a00a440de3</citedby><cites>FETCH-LOGICAL-c400t-91b4c2bb70cf2e7a5d307b4cd4ee9d502a09b1d9944efaf698b7799a00a440de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2019.110248$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zou, Xinquan</creatorcontrib><creatorcontrib>Zhou, Weidong</creatorcontrib><creatorcontrib>Shi, Junfeng</creatorcontrib><creatorcontrib>Ye, Yongming</creatorcontrib><creatorcontrib>Zhao, Yunhe</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Liu, Yuanfa</creatorcontrib><creatorcontrib>Yu, Yue</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><title>Preparation and characterization of poly (N-methylol acrylamide)/polyethylene glycol composite phase change materials for thermal energy storage</title><title>Solar energy materials and solar cells</title><description>The cross-linked poly (N-methylol acrylamide)/polyethylene glycol (PN-MA/PEG) with an interpenetrating polymer network (IPN) was prepared by emulsion polymerization as composite phase change material (CPCM). N, N′-methylene bisacrylamide (MBA) was used for crosslinking agent. The prepared CPCM was characterized by Fourier Transform Infrared (FT-IR) spectroscopy, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), thermal cycle test, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). FT-IR results stated that there is no chemical interaction between PEG and PN-MA. XRD results indicated that the introduction of PN-MA did not change the crystal type of PEG. PEG still exhibits crystallization behavior under the constraints of cross-linked PN-MA. The DSC results indicated that CPCM melts at 26.24 °C with a latent heat of 106.5 J/g and solidifies at 32.56 °C with a latent heat of 104.9 J/g. The TGA results indicated that the CPCM has good thermal stability and is suitable for thermal energy storage application. The results of thermal cycle test indicated that the macroscopic morphology and latent heat of CPCM were almost unchanged after 40 thermal cycles. SEM and TEM results indicated that the microscopic morphology of CPCM was spherical and the particle size distribution was around 145 nm.</description><subject>Acrylamide</subject><subject>Calorimetry</subject><subject>Composite materials</subject><subject>Composite phase change material</subject><subject>Crosslinking</subject><subject>Crystallization</subject><subject>Differential scanning calorimetry</subject><subject>Emulsion polymerization</subject><subject>Energy storage</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Heat</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Interpenetrating networks</subject><subject>Interpenetrating polymer network</subject><subject>Latent heat</subject><subject>Methylene bisacrylamide</subject><subject>Morphology</subject><subject>Organic chemistry</subject><subject>Particle size distribution</subject><subject>Phase change materials</subject><subject>Poly (N-methylol acrylamide)</subject><subject>Polyethylene glycol</subject><subject>Polymerization</subject><subject>Scanning electron microscopy</subject><subject>Size distribution</subject><subject>Thermal energy</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u3CAUhVGUSplM8wZZIGXTLjxzsRl72FSqRvmToraLdo0wXHsY2cYFppL7FHnk4LjrrhDnnnMufITcMtgwYOX2tAmu61Xc5MDEhjHI-f6CrNi-EllRiP0lWYHIq2zWr8h1CCcAyMuCr8jrD4-j8ipaN1A1GKqP6aYjevt3EV1DR9dN9NO3rMd4nDrXUaX91KneGvy8nYfvOg5I227Saa5dP7pgI9LxqALOpUOLND0x9aou0MZ5Go_oe9XRlPPtREN0XrX4kXxokgNv_p1r8uvh_ufhKXv5_vh8-PqSaQ4QM8FqrvO6rkA3OVZqZwqokmQ4ojA7yBWImhkhOMdGNaXY11UlhAJQnIPBYk3ult7Ru99nDFGe3NkPaaXMiwSN74qyTC6-uLR3IXhs5Ohtr_wkGciZvTzJhb2c2cuFfYp9WWKYfvDHopdBWxw0GutRR2mc_X_BG8XXkzk</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Zou, Xinquan</creator><creator>Zhou, Weidong</creator><creator>Shi, Junfeng</creator><creator>Ye, Yongming</creator><creator>Zhao, Yunhe</creator><creator>Zhang, Hong</creator><creator>Liu, Yuanfa</creator><creator>Yu, Yue</creator><creator>Guo, Jing</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202002</creationdate><title>Preparation and characterization of poly (N-methylol acrylamide)/polyethylene glycol composite phase change materials for thermal energy storage</title><author>Zou, Xinquan ; Zhou, Weidong ; Shi, Junfeng ; Ye, Yongming ; Zhao, Yunhe ; Zhang, Hong ; Liu, Yuanfa ; Yu, Yue ; Guo, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-91b4c2bb70cf2e7a5d307b4cd4ee9d502a09b1d9944efaf698b7799a00a440de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acrylamide</topic><topic>Calorimetry</topic><topic>Composite materials</topic><topic>Composite phase change material</topic><topic>Crosslinking</topic><topic>Crystallization</topic><topic>Differential scanning calorimetry</topic><topic>Emulsion polymerization</topic><topic>Energy storage</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Heat</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Interpenetrating networks</topic><topic>Interpenetrating polymer network</topic><topic>Latent heat</topic><topic>Methylene bisacrylamide</topic><topic>Morphology</topic><topic>Organic chemistry</topic><topic>Particle size distribution</topic><topic>Phase change materials</topic><topic>Poly (N-methylol acrylamide)</topic><topic>Polyethylene glycol</topic><topic>Polymerization</topic><topic>Scanning electron microscopy</topic><topic>Size distribution</topic><topic>Thermal energy</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Xinquan</creatorcontrib><creatorcontrib>Zhou, Weidong</creatorcontrib><creatorcontrib>Shi, Junfeng</creatorcontrib><creatorcontrib>Ye, Yongming</creatorcontrib><creatorcontrib>Zhao, Yunhe</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Liu, Yuanfa</creatorcontrib><creatorcontrib>Yu, Yue</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Xinquan</au><au>Zhou, Weidong</au><au>Shi, Junfeng</au><au>Ye, Yongming</au><au>Zhao, Yunhe</au><au>Zhang, Hong</au><au>Liu, Yuanfa</au><au>Yu, Yue</au><au>Guo, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and characterization of poly (N-methylol acrylamide)/polyethylene glycol composite phase change materials for thermal energy storage</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2020-02</date><risdate>2020</risdate><volume>205</volume><spage>110248</spage><pages>110248-</pages><artnum>110248</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The cross-linked poly (N-methylol acrylamide)/polyethylene glycol (PN-MA/PEG) with an interpenetrating polymer network (IPN) was prepared by emulsion polymerization as composite phase change material (CPCM). N, N′-methylene bisacrylamide (MBA) was used for crosslinking agent. The prepared CPCM was characterized by Fourier Transform Infrared (FT-IR) spectroscopy, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), thermal cycle test, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). FT-IR results stated that there is no chemical interaction between PEG and PN-MA. XRD results indicated that the introduction of PN-MA did not change the crystal type of PEG. PEG still exhibits crystallization behavior under the constraints of cross-linked PN-MA. The DSC results indicated that CPCM melts at 26.24 °C with a latent heat of 106.5 J/g and solidifies at 32.56 °C with a latent heat of 104.9 J/g. The TGA results indicated that the CPCM has good thermal stability and is suitable for thermal energy storage application. The results of thermal cycle test indicated that the macroscopic morphology and latent heat of CPCM were almost unchanged after 40 thermal cycles. SEM and TEM results indicated that the microscopic morphology of CPCM was spherical and the particle size distribution was around 145 nm.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2019.110248</doi></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2020-02, Vol.205, p.110248, Article 110248
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2333945366
source Elsevier ScienceDirect Journals Complete
subjects Acrylamide
Calorimetry
Composite materials
Composite phase change material
Crosslinking
Crystallization
Differential scanning calorimetry
Emulsion polymerization
Energy storage
Fourier analysis
Fourier transforms
Heat
Infrared analysis
Infrared spectroscopy
Interpenetrating networks
Interpenetrating polymer network
Latent heat
Methylene bisacrylamide
Morphology
Organic chemistry
Particle size distribution
Phase change materials
Poly (N-methylol acrylamide)
Polyethylene glycol
Polymerization
Scanning electron microscopy
Size distribution
Thermal energy
Thermal stability
Thermogravimetric analysis
Transmission electron microscopy
X-ray diffraction
title Preparation and characterization of poly (N-methylol acrylamide)/polyethylene glycol composite phase change materials for thermal energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20characterization%20of%20poly%20(N-methylol%20acrylamide)/polyethylene%20glycol%20composite%20phase%20change%20materials%20for%20thermal%20energy%20storage&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Zou,%20Xinquan&rft.date=2020-02&rft.volume=205&rft.spage=110248&rft.pages=110248-&rft.artnum=110248&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2019.110248&rft_dat=%3Cproquest_cross%3E2333945366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333945366&rft_id=info:pmid/&rft_els_id=S092702481930577X&rfr_iscdi=true