MILP models and valid inequalities for the two-machine permutation flowshop scheduling problem with minimal time lags

In this paper, we consider the problem of scheduling on two-machine permutation flowshop with minimal time lags between consecutive operations of each job. The aim is to find a feasible schedule that minimizes the total tardiness. This problem is known to be NP-hard in the strong sense. We propose t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Industrial Engineering International 2019-12, Vol.15 (S1), p.223-229
Hauptverfasser: Hamdi, Imen, Toumi, Saïd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 229
container_issue S1
container_start_page 223
container_title Journal of Industrial Engineering International
container_volume 15
creator Hamdi, Imen
Toumi, Saïd
description In this paper, we consider the problem of scheduling on two-machine permutation flowshop with minimal time lags between consecutive operations of each job. The aim is to find a feasible schedule that minimizes the total tardiness. This problem is known to be NP-hard in the strong sense. We propose two mixed-integer linear programming (MILP) models and two types of valid inequalities which aim to tighten the models' representations. One of them is based on dominance rules from the literature. Then, we provide the results of extensive computational experiments used to measure the performance of the proposed MILP models. They are shown to be able to solve optimally instances until the size 40-job and even several larger problem classes, with up to 60 jobs. Furthermore, we can distinguish the effect of the minimal time lags and the inclusion of the valid inequalities in the basic MILP model on the results.
doi_str_mv 10.1007/s40092-019-00331-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2333904257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A610705507</galeid><sourcerecordid>A610705507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3961-762be0ddeaa6bcdcf2e30a4172a9cb9a60827e87e5b59ff5f4fe6640ba8bacec3</originalsourceid><addsrcrecordid>eNp9UcGOFCEU7BhN3Kz7AyYmJJ57fUA3DMfNRt1NxuhBE2-Eph_TbOhmFmgn_r2MbbJ6EQ7vhVdVFFTTvKZwTQHku9wBKNYCVS0A57Slz5oLxnraSsq-P_-rf9lc5fwAdUmpgIuLZv10v_9C5jhiyMQsI_lhgh-JX_BxrV3xmImLiZQJSTnFdjZ2qkNyxDSvxRQfF-JCPOUpHkm2E45r8MuBHFMcAs7k5MtEZr_42QRS_IwkmEN-1bxwJmS8-lMvm28f3n-9vWv3nz_e397sW8uVqJYFGxDGEY0Rgx2tY8jBdFQyo-ygjIAdk7iT2A-9cq53nUMhOhjMbjAWLb9s3m661c7jirnoh7impV6pGedcQcd6WVHXG-pgAmq_uFiSsXWPOHsbF3S-nt8IChL6Hs4EthFsijkndPqY6gPTT01BnyPRWyS6RqJ_R6JpJZGNhFXS5yeKqDZkr_ozhG-QXIfLAdOT3f8Kv_lH-FxyiUkzIetv8F-x5aUm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333904257</pqid></control><display><type>article</type><title>MILP models and valid inequalities for the two-machine permutation flowshop scheduling problem with minimal time lags</title><source>Springer Nature OA Free Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>DOAJ Directory of Open Access Journals</source><creator>Hamdi, Imen ; Toumi, Saïd</creator><creatorcontrib>Hamdi, Imen ; Toumi, Saïd</creatorcontrib><description>In this paper, we consider the problem of scheduling on two-machine permutation flowshop with minimal time lags between consecutive operations of each job. The aim is to find a feasible schedule that minimizes the total tardiness. This problem is known to be NP-hard in the strong sense. We propose two mixed-integer linear programming (MILP) models and two types of valid inequalities which aim to tighten the models' representations. One of them is based on dominance rules from the literature. Then, we provide the results of extensive computational experiments used to measure the performance of the proposed MILP models. They are shown to be able to solve optimally instances until the size 40-job and even several larger problem classes, with up to 60 jobs. Furthermore, we can distinguish the effect of the minimal time lags and the inclusion of the valid inequalities in the basic MILP model on the results.</description><identifier>ISSN: 2251-712X</identifier><identifier>ISSN: 1735-5702</identifier><identifier>EISSN: 2251-712X</identifier><identifier>DOI: 10.1007/s40092-019-00331-1</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Engineering ; Engineering Economics ; Facility Management ; Flowshop ; Industrial and Production Engineering ; Inequalities ; Integer programming ; Linear programming ; Logistics ; Marketing ; Mathematical and Computational Engineering ; MILP models ; Organization ; Original Research ; Permutations ; Production scheduling ; Quality Control ; Reliability ; Safety and Risk ; Schedules ; Scheduling ; Time lags ; Total tardiness ; Traveling salesman problem ; Valid inequalities</subject><ispartof>Journal of Industrial Engineering International, 2019-12, Vol.15 (S1), p.223-229</ispartof><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Journal of Industrial Engineering International is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3961-762be0ddeaa6bcdcf2e30a4172a9cb9a60827e87e5b59ff5f4fe6640ba8bacec3</citedby><cites>FETCH-LOGICAL-c3961-762be0ddeaa6bcdcf2e30a4172a9cb9a60827e87e5b59ff5f4fe6640ba8bacec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40092-019-00331-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s40092-019-00331-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Hamdi, Imen</creatorcontrib><creatorcontrib>Toumi, Saïd</creatorcontrib><title>MILP models and valid inequalities for the two-machine permutation flowshop scheduling problem with minimal time lags</title><title>Journal of Industrial Engineering International</title><addtitle>J Ind Eng Int</addtitle><description>In this paper, we consider the problem of scheduling on two-machine permutation flowshop with minimal time lags between consecutive operations of each job. The aim is to find a feasible schedule that minimizes the total tardiness. This problem is known to be NP-hard in the strong sense. We propose two mixed-integer linear programming (MILP) models and two types of valid inequalities which aim to tighten the models' representations. One of them is based on dominance rules from the literature. Then, we provide the results of extensive computational experiments used to measure the performance of the proposed MILP models. They are shown to be able to solve optimally instances until the size 40-job and even several larger problem classes, with up to 60 jobs. Furthermore, we can distinguish the effect of the minimal time lags and the inclusion of the valid inequalities in the basic MILP model on the results.</description><subject>Engineering</subject><subject>Engineering Economics</subject><subject>Facility Management</subject><subject>Flowshop</subject><subject>Industrial and Production Engineering</subject><subject>Inequalities</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Logistics</subject><subject>Marketing</subject><subject>Mathematical and Computational Engineering</subject><subject>MILP models</subject><subject>Organization</subject><subject>Original Research</subject><subject>Permutations</subject><subject>Production scheduling</subject><subject>Quality Control</subject><subject>Reliability</subject><subject>Safety and Risk</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Time lags</subject><subject>Total tardiness</subject><subject>Traveling salesman problem</subject><subject>Valid inequalities</subject><issn>2251-712X</issn><issn>1735-5702</issn><issn>2251-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UcGOFCEU7BhN3Kz7AyYmJJ57fUA3DMfNRt1NxuhBE2-Eph_TbOhmFmgn_r2MbbJ6EQ7vhVdVFFTTvKZwTQHku9wBKNYCVS0A57Slz5oLxnraSsq-P_-rf9lc5fwAdUmpgIuLZv10v_9C5jhiyMQsI_lhgh-JX_BxrV3xmImLiZQJSTnFdjZ2qkNyxDSvxRQfF-JCPOUpHkm2E45r8MuBHFMcAs7k5MtEZr_42QRS_IwkmEN-1bxwJmS8-lMvm28f3n-9vWv3nz_e397sW8uVqJYFGxDGEY0Rgx2tY8jBdFQyo-ygjIAdk7iT2A-9cq53nUMhOhjMbjAWLb9s3m661c7jirnoh7impV6pGedcQcd6WVHXG-pgAmq_uFiSsXWPOHsbF3S-nt8IChL6Hs4EthFsijkndPqY6gPTT01BnyPRWyS6RqJ_R6JpJZGNhFXS5yeKqDZkr_ozhG-QXIfLAdOT3f8Kv_lH-FxyiUkzIetv8F-x5aUm</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Hamdi, Imen</creator><creator>Toumi, Saïd</creator><general>Springer</general><general>Springer Berlin Heidelberg</general><general>Islamic Azad University, South Tehran Branch</general><scope>OT2</scope><scope>C6C</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191201</creationdate><title>MILP models and valid inequalities for the two-machine permutation flowshop scheduling problem with minimal time lags</title><author>Hamdi, Imen ; Toumi, Saïd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3961-762be0ddeaa6bcdcf2e30a4172a9cb9a60827e87e5b59ff5f4fe6640ba8bacec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Engineering</topic><topic>Engineering Economics</topic><topic>Facility Management</topic><topic>Flowshop</topic><topic>Industrial and Production Engineering</topic><topic>Inequalities</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Logistics</topic><topic>Marketing</topic><topic>Mathematical and Computational Engineering</topic><topic>MILP models</topic><topic>Organization</topic><topic>Original Research</topic><topic>Permutations</topic><topic>Production scheduling</topic><topic>Quality Control</topic><topic>Reliability</topic><topic>Safety and Risk</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Time lags</topic><topic>Total tardiness</topic><topic>Traveling salesman problem</topic><topic>Valid inequalities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamdi, Imen</creatorcontrib><creatorcontrib>Toumi, Saïd</creatorcontrib><collection>EconStor</collection><collection>Springer Nature OA Free Journals</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of Industrial Engineering International</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamdi, Imen</au><au>Toumi, Saïd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MILP models and valid inequalities for the two-machine permutation flowshop scheduling problem with minimal time lags</atitle><jtitle>Journal of Industrial Engineering International</jtitle><stitle>J Ind Eng Int</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>15</volume><issue>S1</issue><spage>223</spage><epage>229</epage><pages>223-229</pages><issn>2251-712X</issn><issn>1735-5702</issn><eissn>2251-712X</eissn><abstract>In this paper, we consider the problem of scheduling on two-machine permutation flowshop with minimal time lags between consecutive operations of each job. The aim is to find a feasible schedule that minimizes the total tardiness. This problem is known to be NP-hard in the strong sense. We propose two mixed-integer linear programming (MILP) models and two types of valid inequalities which aim to tighten the models' representations. One of them is based on dominance rules from the literature. Then, we provide the results of extensive computational experiments used to measure the performance of the proposed MILP models. They are shown to be able to solve optimally instances until the size 40-job and even several larger problem classes, with up to 60 jobs. Furthermore, we can distinguish the effect of the minimal time lags and the inclusion of the valid inequalities in the basic MILP model on the results.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s40092-019-00331-1</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2251-712X
ispartof Journal of Industrial Engineering International, 2019-12, Vol.15 (S1), p.223-229
issn 2251-712X
1735-5702
2251-712X
language eng
recordid cdi_proquest_journals_2333904257
source Springer Nature OA Free Journals; Free E-Journal (出版社公開部分のみ); DOAJ Directory of Open Access Journals
subjects Engineering
Engineering Economics
Facility Management
Flowshop
Industrial and Production Engineering
Inequalities
Integer programming
Linear programming
Logistics
Marketing
Mathematical and Computational Engineering
MILP models
Organization
Original Research
Permutations
Production scheduling
Quality Control
Reliability
Safety and Risk
Schedules
Scheduling
Time lags
Total tardiness
Traveling salesman problem
Valid inequalities
title MILP models and valid inequalities for the two-machine permutation flowshop scheduling problem with minimal time lags
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MILP%20models%20and%20valid%20inequalities%20for%20the%20two-machine%20permutation%20flowshop%20scheduling%20problem%20with%20minimal%20time%20lags&rft.jtitle=Journal%20of%20Industrial%20Engineering%20International&rft.au=Hamdi,%20Imen&rft.date=2019-12-01&rft.volume=15&rft.issue=S1&rft.spage=223&rft.epage=229&rft.pages=223-229&rft.issn=2251-712X&rft.eissn=2251-712X&rft_id=info:doi/10.1007/s40092-019-00331-1&rft_dat=%3Cgale_proqu%3EA610705507%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333904257&rft_id=info:pmid/&rft_galeid=A610705507&rfr_iscdi=true