Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries

All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2020-01, Vol.10 (1), p.n/a
Hauptverfasser: Doux, Jean‐Marie, Nguyen, Han, Tan, Darren H. S., Banerjee, Abhik, Wang, Xuefeng, Wu, Erik A., Jo, Chiho, Yang, Hedi, Meng, Ying Shirley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Advanced energy materials
container_volume 10
creator Doux, Jean‐Marie
Nguyen, Han
Tan, Darren H. S.
Banerjee, Abhik
Wang, Xuefeng
Wu, Erik A.
Jo, Chiho
Yang, Hedi
Meng, Ying Shirley
description All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures. This work investigates the effect of applied stack pressure on lithium metal containing all‐solid‐state batteries. Using characterization techniques to probe failure mechanisms, it is found that above a critical stack pressure, the cells will eventually and predictably fail. Ultimately, determining an optimal stack pressure is crucial to allow Li metal cycling at room temperature.
doi_str_mv 10.1002/aenm.201903253
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2333837968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333837968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4223-80e46e011eacc0d2c390701d02ce7bc12b747c649f754bfa13f598e8952123</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIVKVXzpE4p_iVh4-lKg8pBdT2blxnI1ySutiOUG98At_Il5CoqBzZy4xGM7vaQeiS4DHBmF4r2DZjionAjCbsBA1ISnic5hyfHjmj52jk_QZ3wwXBjA3QyzIo_RY9O_C-dRBN7dabEpwKpmNRZV20sLb5_vxaQbPr9d41qetOWdralD0GFSAqTHg1bRPNIag6ulEhgDPgL9BZpWoPo18cosXtbDW9j4unu4fppIg1p5TFOQaeAiYElNa4pJoJnGFSYqohW2tC1xnPdMpFlSV8XSnCqkTkkIuEEsqG6OqwdOfsews-yI1t3ba7JyljLGeZ6N4fovHBpZ313kEld840yu0lwbJvUfYtymOLXUAcAh-mhv0_bjmZPc7_sj_lpnk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333837968</pqid></control><display><type>article</type><title>Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries</title><source>Wiley-Blackwell Journals</source><creator>Doux, Jean‐Marie ; Nguyen, Han ; Tan, Darren H. S. ; Banerjee, Abhik ; Wang, Xuefeng ; Wu, Erik A. ; Jo, Chiho ; Yang, Hedi ; Meng, Ying Shirley</creator><creatorcontrib>Doux, Jean‐Marie ; Nguyen, Han ; Tan, Darren H. S. ; Banerjee, Abhik ; Wang, Xuefeng ; Wu, Erik A. ; Jo, Chiho ; Yang, Hedi ; Meng, Ying Shirley</creatorcontrib><description>All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures. This work investigates the effect of applied stack pressure on lithium metal containing all‐solid‐state batteries. Using characterization techniques to probe failure mechanisms, it is found that above a critical stack pressure, the cells will eventually and predictably fail. Ultimately, determining an optimal stack pressure is crucial to allow Li metal cycling at room temperature.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201903253</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; dendrite ; Electrolytes ; Failure mechanisms ; Flux density ; Interfacial properties ; Li metal ; Lithium ; Lithium batteries ; Mechanical properties ; Molten salt electrolytes ; Plating ; Porosity ; Room temperature ; Solid electrolytes ; solid‐state batteries ; stack pressure ; X‐ray tomography</subject><ispartof>Advanced energy materials, 2020-01, Vol.10 (1), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4223-80e46e011eacc0d2c390701d02ce7bc12b747c649f754bfa13f598e8952123</citedby><cites>FETCH-LOGICAL-c4223-80e46e011eacc0d2c390701d02ce7bc12b747c649f754bfa13f598e8952123</cites><orcidid>0000-0002-9801-4800 ; 0000-0001-8936-8845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201903253$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201903253$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Doux, Jean‐Marie</creatorcontrib><creatorcontrib>Nguyen, Han</creatorcontrib><creatorcontrib>Tan, Darren H. S.</creatorcontrib><creatorcontrib>Banerjee, Abhik</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Wu, Erik A.</creatorcontrib><creatorcontrib>Jo, Chiho</creatorcontrib><creatorcontrib>Yang, Hedi</creatorcontrib><creatorcontrib>Meng, Ying Shirley</creatorcontrib><title>Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries</title><title>Advanced energy materials</title><description>All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures. This work investigates the effect of applied stack pressure on lithium metal containing all‐solid‐state batteries. Using characterization techniques to probe failure mechanisms, it is found that above a critical stack pressure, the cells will eventually and predictably fail. Ultimately, determining an optimal stack pressure is crucial to allow Li metal cycling at room temperature.</description><subject>Anodes</subject><subject>dendrite</subject><subject>Electrolytes</subject><subject>Failure mechanisms</subject><subject>Flux density</subject><subject>Interfacial properties</subject><subject>Li metal</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Mechanical properties</subject><subject>Molten salt electrolytes</subject><subject>Plating</subject><subject>Porosity</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><subject>solid‐state batteries</subject><subject>stack pressure</subject><subject>X‐ray tomography</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIVKVXzpE4p_iVh4-lKg8pBdT2blxnI1ySutiOUG98At_Il5CoqBzZy4xGM7vaQeiS4DHBmF4r2DZjionAjCbsBA1ISnic5hyfHjmj52jk_QZ3wwXBjA3QyzIo_RY9O_C-dRBN7dabEpwKpmNRZV20sLb5_vxaQbPr9d41qetOWdralD0GFSAqTHg1bRPNIag6ulEhgDPgL9BZpWoPo18cosXtbDW9j4unu4fppIg1p5TFOQaeAiYElNa4pJoJnGFSYqohW2tC1xnPdMpFlSV8XSnCqkTkkIuEEsqG6OqwdOfsews-yI1t3ba7JyljLGeZ6N4fovHBpZ313kEld840yu0lwbJvUfYtymOLXUAcAh-mhv0_bjmZPc7_sj_lpnk0</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Doux, Jean‐Marie</creator><creator>Nguyen, Han</creator><creator>Tan, Darren H. S.</creator><creator>Banerjee, Abhik</creator><creator>Wang, Xuefeng</creator><creator>Wu, Erik A.</creator><creator>Jo, Chiho</creator><creator>Yang, Hedi</creator><creator>Meng, Ying Shirley</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9801-4800</orcidid><orcidid>https://orcid.org/0000-0001-8936-8845</orcidid></search><sort><creationdate>20200101</creationdate><title>Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries</title><author>Doux, Jean‐Marie ; Nguyen, Han ; Tan, Darren H. S. ; Banerjee, Abhik ; Wang, Xuefeng ; Wu, Erik A. ; Jo, Chiho ; Yang, Hedi ; Meng, Ying Shirley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4223-80e46e011eacc0d2c390701d02ce7bc12b747c649f754bfa13f598e8952123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>dendrite</topic><topic>Electrolytes</topic><topic>Failure mechanisms</topic><topic>Flux density</topic><topic>Interfacial properties</topic><topic>Li metal</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Mechanical properties</topic><topic>Molten salt electrolytes</topic><topic>Plating</topic><topic>Porosity</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><topic>solid‐state batteries</topic><topic>stack pressure</topic><topic>X‐ray tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doux, Jean‐Marie</creatorcontrib><creatorcontrib>Nguyen, Han</creatorcontrib><creatorcontrib>Tan, Darren H. S.</creatorcontrib><creatorcontrib>Banerjee, Abhik</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Wu, Erik A.</creatorcontrib><creatorcontrib>Jo, Chiho</creatorcontrib><creatorcontrib>Yang, Hedi</creatorcontrib><creatorcontrib>Meng, Ying Shirley</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doux, Jean‐Marie</au><au>Nguyen, Han</au><au>Tan, Darren H. S.</au><au>Banerjee, Abhik</au><au>Wang, Xuefeng</au><au>Wu, Erik A.</au><au>Jo, Chiho</au><au>Yang, Hedi</au><au>Meng, Ying Shirley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures. This work investigates the effect of applied stack pressure on lithium metal containing all‐solid‐state batteries. Using characterization techniques to probe failure mechanisms, it is found that above a critical stack pressure, the cells will eventually and predictably fail. Ultimately, determining an optimal stack pressure is crucial to allow Li metal cycling at room temperature.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201903253</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9801-4800</orcidid><orcidid>https://orcid.org/0000-0001-8936-8845</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2020-01, Vol.10 (1), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2333837968
source Wiley-Blackwell Journals
subjects Anodes
dendrite
Electrolytes
Failure mechanisms
Flux density
Interfacial properties
Li metal
Lithium
Lithium batteries
Mechanical properties
Molten salt electrolytes
Plating
Porosity
Room temperature
Solid electrolytes
solid‐state batteries
stack pressure
X‐ray tomography
title Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stack%20Pressure%20Considerations%20for%20Room%E2%80%90Temperature%20All%E2%80%90Solid%E2%80%90State%20Lithium%20Metal%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Doux,%20Jean%E2%80%90Marie&rft.date=2020-01-01&rft.volume=10&rft.issue=1&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201903253&rft_dat=%3Cproquest_cross%3E2333837968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333837968&rft_id=info:pmid/&rfr_iscdi=true