Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries
All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lith...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2020-01, Vol.10 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 10 |
creator | Doux, Jean‐Marie Nguyen, Han Tan, Darren H. S. Banerjee, Abhik Wang, Xuefeng Wu, Erik A. Jo, Chiho Yang, Hedi Meng, Ying Shirley |
description | All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures.
This work investigates the effect of applied stack pressure on lithium metal containing all‐solid‐state batteries. Using characterization techniques to probe failure mechanisms, it is found that above a critical stack pressure, the cells will eventually and predictably fail. Ultimately, determining an optimal stack pressure is crucial to allow Li metal cycling at room temperature. |
doi_str_mv | 10.1002/aenm.201903253 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2333837968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333837968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4223-80e46e011eacc0d2c390701d02ce7bc12b747c649f754bfa13f598e8952123</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIVKVXzpE4p_iVh4-lKg8pBdT2blxnI1ySutiOUG98At_Il5CoqBzZy4xGM7vaQeiS4DHBmF4r2DZjionAjCbsBA1ISnic5hyfHjmj52jk_QZ3wwXBjA3QyzIo_RY9O_C-dRBN7dabEpwKpmNRZV20sLb5_vxaQbPr9d41qetOWdralD0GFSAqTHg1bRPNIag6ulEhgDPgL9BZpWoPo18cosXtbDW9j4unu4fppIg1p5TFOQaeAiYElNa4pJoJnGFSYqohW2tC1xnPdMpFlSV8XSnCqkTkkIuEEsqG6OqwdOfsews-yI1t3ba7JyljLGeZ6N4fovHBpZ313kEld840yu0lwbJvUfYtymOLXUAcAh-mhv0_bjmZPc7_sj_lpnk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333837968</pqid></control><display><type>article</type><title>Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries</title><source>Wiley-Blackwell Journals</source><creator>Doux, Jean‐Marie ; Nguyen, Han ; Tan, Darren H. S. ; Banerjee, Abhik ; Wang, Xuefeng ; Wu, Erik A. ; Jo, Chiho ; Yang, Hedi ; Meng, Ying Shirley</creator><creatorcontrib>Doux, Jean‐Marie ; Nguyen, Han ; Tan, Darren H. S. ; Banerjee, Abhik ; Wang, Xuefeng ; Wu, Erik A. ; Jo, Chiho ; Yang, Hedi ; Meng, Ying Shirley</creatorcontrib><description>All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures.
This work investigates the effect of applied stack pressure on lithium metal containing all‐solid‐state batteries. Using characterization techniques to probe failure mechanisms, it is found that above a critical stack pressure, the cells will eventually and predictably fail. Ultimately, determining an optimal stack pressure is crucial to allow Li metal cycling at room temperature.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201903253</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; dendrite ; Electrolytes ; Failure mechanisms ; Flux density ; Interfacial properties ; Li metal ; Lithium ; Lithium batteries ; Mechanical properties ; Molten salt electrolytes ; Plating ; Porosity ; Room temperature ; Solid electrolytes ; solid‐state batteries ; stack pressure ; X‐ray tomography</subject><ispartof>Advanced energy materials, 2020-01, Vol.10 (1), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4223-80e46e011eacc0d2c390701d02ce7bc12b747c649f754bfa13f598e8952123</citedby><cites>FETCH-LOGICAL-c4223-80e46e011eacc0d2c390701d02ce7bc12b747c649f754bfa13f598e8952123</cites><orcidid>0000-0002-9801-4800 ; 0000-0001-8936-8845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201903253$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201903253$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Doux, Jean‐Marie</creatorcontrib><creatorcontrib>Nguyen, Han</creatorcontrib><creatorcontrib>Tan, Darren H. S.</creatorcontrib><creatorcontrib>Banerjee, Abhik</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Wu, Erik A.</creatorcontrib><creatorcontrib>Jo, Chiho</creatorcontrib><creatorcontrib>Yang, Hedi</creatorcontrib><creatorcontrib>Meng, Ying Shirley</creatorcontrib><title>Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries</title><title>Advanced energy materials</title><description>All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures.
This work investigates the effect of applied stack pressure on lithium metal containing all‐solid‐state batteries. Using characterization techniques to probe failure mechanisms, it is found that above a critical stack pressure, the cells will eventually and predictably fail. Ultimately, determining an optimal stack pressure is crucial to allow Li metal cycling at room temperature.</description><subject>Anodes</subject><subject>dendrite</subject><subject>Electrolytes</subject><subject>Failure mechanisms</subject><subject>Flux density</subject><subject>Interfacial properties</subject><subject>Li metal</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Mechanical properties</subject><subject>Molten salt electrolytes</subject><subject>Plating</subject><subject>Porosity</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><subject>solid‐state batteries</subject><subject>stack pressure</subject><subject>X‐ray tomography</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIVKVXzpE4p_iVh4-lKg8pBdT2blxnI1ySutiOUG98At_Il5CoqBzZy4xGM7vaQeiS4DHBmF4r2DZjionAjCbsBA1ISnic5hyfHjmj52jk_QZ3wwXBjA3QyzIo_RY9O_C-dRBN7dabEpwKpmNRZV20sLb5_vxaQbPr9d41qetOWdralD0GFSAqTHg1bRPNIag6ulEhgDPgL9BZpWoPo18cosXtbDW9j4unu4fppIg1p5TFOQaeAiYElNa4pJoJnGFSYqohW2tC1xnPdMpFlSV8XSnCqkTkkIuEEsqG6OqwdOfsews-yI1t3ba7JyljLGeZ6N4fovHBpZ313kEld840yu0lwbJvUfYtymOLXUAcAh-mhv0_bjmZPc7_sj_lpnk0</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Doux, Jean‐Marie</creator><creator>Nguyen, Han</creator><creator>Tan, Darren H. S.</creator><creator>Banerjee, Abhik</creator><creator>Wang, Xuefeng</creator><creator>Wu, Erik A.</creator><creator>Jo, Chiho</creator><creator>Yang, Hedi</creator><creator>Meng, Ying Shirley</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9801-4800</orcidid><orcidid>https://orcid.org/0000-0001-8936-8845</orcidid></search><sort><creationdate>20200101</creationdate><title>Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries</title><author>Doux, Jean‐Marie ; Nguyen, Han ; Tan, Darren H. S. ; Banerjee, Abhik ; Wang, Xuefeng ; Wu, Erik A. ; Jo, Chiho ; Yang, Hedi ; Meng, Ying Shirley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4223-80e46e011eacc0d2c390701d02ce7bc12b747c649f754bfa13f598e8952123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>dendrite</topic><topic>Electrolytes</topic><topic>Failure mechanisms</topic><topic>Flux density</topic><topic>Interfacial properties</topic><topic>Li metal</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Mechanical properties</topic><topic>Molten salt electrolytes</topic><topic>Plating</topic><topic>Porosity</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><topic>solid‐state batteries</topic><topic>stack pressure</topic><topic>X‐ray tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doux, Jean‐Marie</creatorcontrib><creatorcontrib>Nguyen, Han</creatorcontrib><creatorcontrib>Tan, Darren H. S.</creatorcontrib><creatorcontrib>Banerjee, Abhik</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Wu, Erik A.</creatorcontrib><creatorcontrib>Jo, Chiho</creatorcontrib><creatorcontrib>Yang, Hedi</creatorcontrib><creatorcontrib>Meng, Ying Shirley</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doux, Jean‐Marie</au><au>Nguyen, Han</au><au>Tan, Darren H. S.</au><au>Banerjee, Abhik</au><au>Wang, Xuefeng</au><au>Wu, Erik A.</au><au>Jo, Chiho</au><au>Yang, Hedi</au><au>Meng, Ying Shirley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures.
This work investigates the effect of applied stack pressure on lithium metal containing all‐solid‐state batteries. Using characterization techniques to probe failure mechanisms, it is found that above a critical stack pressure, the cells will eventually and predictably fail. Ultimately, determining an optimal stack pressure is crucial to allow Li metal cycling at room temperature.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201903253</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9801-4800</orcidid><orcidid>https://orcid.org/0000-0001-8936-8845</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2020-01, Vol.10 (1), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2333837968 |
source | Wiley-Blackwell Journals |
subjects | Anodes dendrite Electrolytes Failure mechanisms Flux density Interfacial properties Li metal Lithium Lithium batteries Mechanical properties Molten salt electrolytes Plating Porosity Room temperature Solid electrolytes solid‐state batteries stack pressure X‐ray tomography |
title | Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stack%20Pressure%20Considerations%20for%20Room%E2%80%90Temperature%20All%E2%80%90Solid%E2%80%90State%20Lithium%20Metal%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Doux,%20Jean%E2%80%90Marie&rft.date=2020-01-01&rft.volume=10&rft.issue=1&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201903253&rft_dat=%3Cproquest_cross%3E2333837968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333837968&rft_id=info:pmid/&rfr_iscdi=true |