Probing the structural evolution in deformed isoprene rubber by in situ synchrotron X-ray diffraction and atomic force microscopy
Developing a better understanding of the structural evolution in deformed polymers is key to designing new materials and structures that achieve superior mechanical properties. Here, we used in situ synchrotron wide-angle X-ray diffraction (WAXD) and atomic force microscopy (AFM) nanomechanical mapp...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2019-12, Vol.185, p.121926, Article 121926 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 121926 |
container_title | Polymer (Guilford) |
container_volume | 185 |
creator | Sun, Shuquan Hu, Fengyan Russell, Thomas P. Wang, Dong Zhang, Liqun |
description | Developing a better understanding of the structural evolution in deformed polymers is key to designing new materials and structures that achieve superior mechanical properties. Here, we used in situ synchrotron wide-angle X-ray diffraction (WAXD) and atomic force microscopy (AFM) nanomechanical mapping (AFM-NM) to assess the strain-induced crystallization (SIC) and the associated structural evolution and mechanical properties of peroxide vulcanized isoprene rubber (IR) as a function of crosslink density (ν) and strain. The WAXD and AFM-NM results show agreement in the onset strain of SIC. Crystalline reflections appears in the WAXD while a nanofibrillar structure is found by AFM-NM. The higher ν, the smaller is the onset strain of a steep upturn in the stress-strain curves, the smaller is the onset strain of SIC, the higher is the crystallinity as evidenced in the WAXD, and the larger is the amount of nanofibrils seen by AFM-NM. Both WAXD and AFM-NM results show the SIC occurs rapidly at high strains while most chains remain in the amorphous state. The elastic modulus of the formed nanofibrils that range in diameter from several to a hundred nanometers, is two times higher than that of the amorphous regions. From the WAXD and AFM-NM results, a schematic model of structural evolution is proposed and used to illustrate the self-reinforcement mechanism in IR.
[Display omitted]
•The WAXD and AFM results show agreement in the structural evolution in deformed IR.•The induced nanofibrils have diameters from several to a hundred nm and an elastic modulus 2 times higher than that of the amorphous regions.•A schematic model of structural evolution is proposed to illustrate the self-reinforcement mechanism in deformed IR.•The simultaneous use of WAXD and AFM open a new route to investigate the structural evolution and mechanical properties of deformed polymers. |
doi_str_mv | 10.1016/j.polymer.2019.121926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2333609334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386119309322</els_id><sourcerecordid>2333609334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-7a0da22c6a23bc163cedc9d09bb1e98a79fc8252d30da50ca6fbfdfd73f6fd913</originalsourceid><addsrcrecordid>eNqFUE1LAzEUDKJg_fgJQsDz1ny0u81JRPyCgh4UvIVs8mJT2s36khX26D83td49vQdvZt7MEHLB2ZQzXl-tp33cjFvAqWBcTbngStQHZMIXjayEUPyQTBiTopKLmh-Tk5TWjDExF7MJ-X7B2Ibug-YV0JRxsHlAs6HwFTdDDrGjoaMOfMQtOBpS7BE6oDi0LSBtx905hTzQNHZ2hTFjobxXaEbqgvdo7K-I6Rw1OW6DpUXKAi0bxmRjP56RI282Cc7_5il5u797vX2sls8PT7c3y8pK2eSqMcwZIWxthGwtr6UFZ5Vjqm05qIVplLeLksnJgpsza2rfeuddI33tneLylFzudXuMnwOkrNdxwK681EJKWTMl5ayg5nvUzl5C8LrHsDU4as70rm291n9t613bet924V3veVAifIVyTTZAV0wGBJu1i-EfhR-GQo-9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333609334</pqid></control><display><type>article</type><title>Probing the structural evolution in deformed isoprene rubber by in situ synchrotron X-ray diffraction and atomic force microscopy</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sun, Shuquan ; Hu, Fengyan ; Russell, Thomas P. ; Wang, Dong ; Zhang, Liqun</creator><creatorcontrib>Sun, Shuquan ; Hu, Fengyan ; Russell, Thomas P. ; Wang, Dong ; Zhang, Liqun</creatorcontrib><description>Developing a better understanding of the structural evolution in deformed polymers is key to designing new materials and structures that achieve superior mechanical properties. Here, we used in situ synchrotron wide-angle X-ray diffraction (WAXD) and atomic force microscopy (AFM) nanomechanical mapping (AFM-NM) to assess the strain-induced crystallization (SIC) and the associated structural evolution and mechanical properties of peroxide vulcanized isoprene rubber (IR) as a function of crosslink density (ν) and strain. The WAXD and AFM-NM results show agreement in the onset strain of SIC. Crystalline reflections appears in the WAXD while a nanofibrillar structure is found by AFM-NM. The higher ν, the smaller is the onset strain of a steep upturn in the stress-strain curves, the smaller is the onset strain of SIC, the higher is the crystallinity as evidenced in the WAXD, and the larger is the amount of nanofibrils seen by AFM-NM. Both WAXD and AFM-NM results show the SIC occurs rapidly at high strains while most chains remain in the amorphous state. The elastic modulus of the formed nanofibrils that range in diameter from several to a hundred nanometers, is two times higher than that of the amorphous regions. From the WAXD and AFM-NM results, a schematic model of structural evolution is proposed and used to illustrate the self-reinforcement mechanism in IR.
[Display omitted]
•The WAXD and AFM results show agreement in the structural evolution in deformed IR.•The induced nanofibrils have diameters from several to a hundred nm and an elastic modulus 2 times higher than that of the amorphous regions.•A schematic model of structural evolution is proposed to illustrate the self-reinforcement mechanism in deformed IR.•The simultaneous use of WAXD and AFM open a new route to investigate the structural evolution and mechanical properties of deformed polymers.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2019.121926</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Atomic force microscopy ; Crosslinking ; Crystal structure ; Crystallinity ; Crystallization ; Evolution ; Isoprene ; Isoprene rubber ; Mapping ; Mechanical properties ; Microscopes ; Microscopy ; Modulus of elasticity ; Peroxide ; Polymers ; Rubber ; Strain ; Strain induced crystallization ; Stress-strain curves ; Structural evolution ; Synchrotron radiation ; X-ray diffraction</subject><ispartof>Polymer (Guilford), 2019-12, Vol.185, p.121926, Article 121926</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 17, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-7a0da22c6a23bc163cedc9d09bb1e98a79fc8252d30da50ca6fbfdfd73f6fd913</citedby><cites>FETCH-LOGICAL-c337t-7a0da22c6a23bc163cedc9d09bb1e98a79fc8252d30da50ca6fbfdfd73f6fd913</cites><orcidid>0000-0001-5454-3324 ; 0000-0003-2326-0852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2019.121926$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Sun, Shuquan</creatorcontrib><creatorcontrib>Hu, Fengyan</creatorcontrib><creatorcontrib>Russell, Thomas P.</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Zhang, Liqun</creatorcontrib><title>Probing the structural evolution in deformed isoprene rubber by in situ synchrotron X-ray diffraction and atomic force microscopy</title><title>Polymer (Guilford)</title><description>Developing a better understanding of the structural evolution in deformed polymers is key to designing new materials and structures that achieve superior mechanical properties. Here, we used in situ synchrotron wide-angle X-ray diffraction (WAXD) and atomic force microscopy (AFM) nanomechanical mapping (AFM-NM) to assess the strain-induced crystallization (SIC) and the associated structural evolution and mechanical properties of peroxide vulcanized isoprene rubber (IR) as a function of crosslink density (ν) and strain. The WAXD and AFM-NM results show agreement in the onset strain of SIC. Crystalline reflections appears in the WAXD while a nanofibrillar structure is found by AFM-NM. The higher ν, the smaller is the onset strain of a steep upturn in the stress-strain curves, the smaller is the onset strain of SIC, the higher is the crystallinity as evidenced in the WAXD, and the larger is the amount of nanofibrils seen by AFM-NM. Both WAXD and AFM-NM results show the SIC occurs rapidly at high strains while most chains remain in the amorphous state. The elastic modulus of the formed nanofibrils that range in diameter from several to a hundred nanometers, is two times higher than that of the amorphous regions. From the WAXD and AFM-NM results, a schematic model of structural evolution is proposed and used to illustrate the self-reinforcement mechanism in IR.
[Display omitted]
•The WAXD and AFM results show agreement in the structural evolution in deformed IR.•The induced nanofibrils have diameters from several to a hundred nm and an elastic modulus 2 times higher than that of the amorphous regions.•A schematic model of structural evolution is proposed to illustrate the self-reinforcement mechanism in deformed IR.•The simultaneous use of WAXD and AFM open a new route to investigate the structural evolution and mechanical properties of deformed polymers.</description><subject>Atomic force microscopy</subject><subject>Crosslinking</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallization</subject><subject>Evolution</subject><subject>Isoprene</subject><subject>Isoprene rubber</subject><subject>Mapping</subject><subject>Mechanical properties</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Modulus of elasticity</subject><subject>Peroxide</subject><subject>Polymers</subject><subject>Rubber</subject><subject>Strain</subject><subject>Strain induced crystallization</subject><subject>Stress-strain curves</subject><subject>Structural evolution</subject><subject>Synchrotron radiation</subject><subject>X-ray diffraction</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUDKJg_fgJQsDz1ny0u81JRPyCgh4UvIVs8mJT2s36khX26D83td49vQdvZt7MEHLB2ZQzXl-tp33cjFvAqWBcTbngStQHZMIXjayEUPyQTBiTopKLmh-Tk5TWjDExF7MJ-X7B2Ibug-YV0JRxsHlAs6HwFTdDDrGjoaMOfMQtOBpS7BE6oDi0LSBtx905hTzQNHZ2hTFjobxXaEbqgvdo7K-I6Rw1OW6DpUXKAi0bxmRjP56RI282Cc7_5il5u797vX2sls8PT7c3y8pK2eSqMcwZIWxthGwtr6UFZ5Vjqm05qIVplLeLksnJgpsza2rfeuddI33tneLylFzudXuMnwOkrNdxwK681EJKWTMl5ayg5nvUzl5C8LrHsDU4as70rm291n9t613bet924V3veVAifIVyTTZAV0wGBJu1i-EfhR-GQo-9</recordid><startdate>20191217</startdate><enddate>20191217</enddate><creator>Sun, Shuquan</creator><creator>Hu, Fengyan</creator><creator>Russell, Thomas P.</creator><creator>Wang, Dong</creator><creator>Zhang, Liqun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-5454-3324</orcidid><orcidid>https://orcid.org/0000-0003-2326-0852</orcidid></search><sort><creationdate>20191217</creationdate><title>Probing the structural evolution in deformed isoprene rubber by in situ synchrotron X-ray diffraction and atomic force microscopy</title><author>Sun, Shuquan ; Hu, Fengyan ; Russell, Thomas P. ; Wang, Dong ; Zhang, Liqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-7a0da22c6a23bc163cedc9d09bb1e98a79fc8252d30da50ca6fbfdfd73f6fd913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic force microscopy</topic><topic>Crosslinking</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallization</topic><topic>Evolution</topic><topic>Isoprene</topic><topic>Isoprene rubber</topic><topic>Mapping</topic><topic>Mechanical properties</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Modulus of elasticity</topic><topic>Peroxide</topic><topic>Polymers</topic><topic>Rubber</topic><topic>Strain</topic><topic>Strain induced crystallization</topic><topic>Stress-strain curves</topic><topic>Structural evolution</topic><topic>Synchrotron radiation</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Shuquan</creatorcontrib><creatorcontrib>Hu, Fengyan</creatorcontrib><creatorcontrib>Russell, Thomas P.</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Zhang, Liqun</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Shuquan</au><au>Hu, Fengyan</au><au>Russell, Thomas P.</au><au>Wang, Dong</au><au>Zhang, Liqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the structural evolution in deformed isoprene rubber by in situ synchrotron X-ray diffraction and atomic force microscopy</atitle><jtitle>Polymer (Guilford)</jtitle><date>2019-12-17</date><risdate>2019</risdate><volume>185</volume><spage>121926</spage><pages>121926-</pages><artnum>121926</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Developing a better understanding of the structural evolution in deformed polymers is key to designing new materials and structures that achieve superior mechanical properties. Here, we used in situ synchrotron wide-angle X-ray diffraction (WAXD) and atomic force microscopy (AFM) nanomechanical mapping (AFM-NM) to assess the strain-induced crystallization (SIC) and the associated structural evolution and mechanical properties of peroxide vulcanized isoprene rubber (IR) as a function of crosslink density (ν) and strain. The WAXD and AFM-NM results show agreement in the onset strain of SIC. Crystalline reflections appears in the WAXD while a nanofibrillar structure is found by AFM-NM. The higher ν, the smaller is the onset strain of a steep upturn in the stress-strain curves, the smaller is the onset strain of SIC, the higher is the crystallinity as evidenced in the WAXD, and the larger is the amount of nanofibrils seen by AFM-NM. Both WAXD and AFM-NM results show the SIC occurs rapidly at high strains while most chains remain in the amorphous state. The elastic modulus of the formed nanofibrils that range in diameter from several to a hundred nanometers, is two times higher than that of the amorphous regions. From the WAXD and AFM-NM results, a schematic model of structural evolution is proposed and used to illustrate the self-reinforcement mechanism in IR.
[Display omitted]
•The WAXD and AFM results show agreement in the structural evolution in deformed IR.•The induced nanofibrils have diameters from several to a hundred nm and an elastic modulus 2 times higher than that of the amorphous regions.•A schematic model of structural evolution is proposed to illustrate the self-reinforcement mechanism in deformed IR.•The simultaneous use of WAXD and AFM open a new route to investigate the structural evolution and mechanical properties of deformed polymers.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2019.121926</doi><orcidid>https://orcid.org/0000-0001-5454-3324</orcidid><orcidid>https://orcid.org/0000-0003-2326-0852</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2019-12, Vol.185, p.121926, Article 121926 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2333609334 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Atomic force microscopy Crosslinking Crystal structure Crystallinity Crystallization Evolution Isoprene Isoprene rubber Mapping Mechanical properties Microscopes Microscopy Modulus of elasticity Peroxide Polymers Rubber Strain Strain induced crystallization Stress-strain curves Structural evolution Synchrotron radiation X-ray diffraction |
title | Probing the structural evolution in deformed isoprene rubber by in situ synchrotron X-ray diffraction and atomic force microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20structural%20evolution%20in%20deformed%20isoprene%20rubber%20by%20in%20situ%20synchrotron%20X-ray%20diffraction%20and%20atomic%20force%20microscopy&rft.jtitle=Polymer%20(Guilford)&rft.au=Sun,%20Shuquan&rft.date=2019-12-17&rft.volume=185&rft.spage=121926&rft.pages=121926-&rft.artnum=121926&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2019.121926&rft_dat=%3Cproquest_cross%3E2333609334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333609334&rft_id=info:pmid/&rft_els_id=S0032386119309322&rfr_iscdi=true |