Ignition and combustion analysis of direct write fabricated aluminum/metal oxide/PVDF films
Metallized energetic composite films incorporating high mass loadings of aluminum nanoparticle fuels and metal oxide oxidizers (thermite) within a polyvinylidene fluoride (PVDF) polymer matrix were constructed via repeatable direct write additive manufacturing (3-D Printing). High speed videography,...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2020-01, Vol.211, p.260-269 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 269 |
---|---|
container_issue | |
container_start_page | 260 |
container_title | Combustion and flame |
container_volume | 211 |
creator | Rehwoldt, Miles C. Wang, Haiyang Kline, Dylan J. Wu, Tao Eckman, Noah Wang, Peng Agrawal, Niti R. Zachariah, Michael R. |
description | Metallized energetic composite films incorporating high mass loadings of aluminum nanoparticle fuels and metal oxide oxidizers (thermite) within a polyvinylidene fluoride (PVDF) polymer matrix were constructed via repeatable direct write additive manufacturing (3-D Printing). High speed videography, Temperature-Jump/Time of Flight Mass Spectrometry (T-Jump/TOFMS), and 2D spaciotemporal temperature mapping were used to analyze the role of composition and particle loading with respect to ignition behavior and combustion performance. This study reveals that, while the ignition temperatures of films are relatively unvaried in pressurized environments, ignition temperatures in vacuum are strongly dependent on the inclusion of thermite material and the specific type of thermite utilized. Increasing thermite mass loading results in a reduction in film flame speed and mechanical integrity but increases flame temperature. Coupled time of flight mass spectrometry reinforces and elaborates on previous findings regarding the Al/PVDF reaction mechanism as it pertains to the coupled behavior of incorporating increasing amounts of metal oxides. TOFMS highlights carbon dioxide generation from the metal oxide interaction with PVDF, leading to unintended stoichiometric considerations and distinct changes in steady burn behavior which contribute adverse factors towards flame propagation. |
doi_str_mv | 10.1016/j.combustflame.2019.08.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2333588687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218019303864</els_id><sourcerecordid>2333588687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-fbd11d43908b88b1683e935e56ebceb1e50c2880a632846630eeb53bfeeb50e83</originalsourceid><addsrcrecordid>eNqNkDFPwzAUhC0EEqXwHyyYkz7HSeqyoZZCpUowAAuDZTsvyFESFzsB-u9JlQ6MTKeT7k7vfYRcM4gZsHxWxcY1ug9dWasG4wTYIgYRQ8JPyIRlWR4li4SdkgkAgyhhAs7JRQgVAMxTzifkffPR2s66lqq2oMex0ap6H2ygrqSF9Wg6-u1th7RU2lujOiyoqvvGtn0za7BTNXU_tsDZ89tqTUtbN-GSnJWqDnh11Cl5Xd-_LB-j7dPDZnm3jUwKWReVumCsSPkChBZCs1xwXPAMsxy1Qc0wA5MIASrniUjznAOizrguDwIo-JTcjLs77z57DJ2sXO-H-4NMOOeZELmYD6nbMWW8C8FjKXfeNsrvJQN5gCkr-RemPMCUIOQAcyivxjIOf3xZ9DIYi63BEY0snP3PzC8LOIWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333588687</pqid></control><display><type>article</type><title>Ignition and combustion analysis of direct write fabricated aluminum/metal oxide/PVDF films</title><source>Elsevier ScienceDirect Journals</source><creator>Rehwoldt, Miles C. ; Wang, Haiyang ; Kline, Dylan J. ; Wu, Tao ; Eckman, Noah ; Wang, Peng ; Agrawal, Niti R. ; Zachariah, Michael R.</creator><creatorcontrib>Rehwoldt, Miles C. ; Wang, Haiyang ; Kline, Dylan J. ; Wu, Tao ; Eckman, Noah ; Wang, Peng ; Agrawal, Niti R. ; Zachariah, Michael R.</creatorcontrib><description>Metallized energetic composite films incorporating high mass loadings of aluminum nanoparticle fuels and metal oxide oxidizers (thermite) within a polyvinylidene fluoride (PVDF) polymer matrix were constructed via repeatable direct write additive manufacturing (3-D Printing). High speed videography, Temperature-Jump/Time of Flight Mass Spectrometry (T-Jump/TOFMS), and 2D spaciotemporal temperature mapping were used to analyze the role of composition and particle loading with respect to ignition behavior and combustion performance. This study reveals that, while the ignition temperatures of films are relatively unvaried in pressurized environments, ignition temperatures in vacuum are strongly dependent on the inclusion of thermite material and the specific type of thermite utilized. Increasing thermite mass loading results in a reduction in film flame speed and mechanical integrity but increases flame temperature. Coupled time of flight mass spectrometry reinforces and elaborates on previous findings regarding the Al/PVDF reaction mechanism as it pertains to the coupled behavior of incorporating increasing amounts of metal oxides. TOFMS highlights carbon dioxide generation from the metal oxide interaction with PVDF, leading to unintended stoichiometric considerations and distinct changes in steady burn behavior which contribute adverse factors towards flame propagation.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2019.08.023</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>3D printing ; Aluminum ; Carbon dioxide ; Combustion ; Energetics ; Flame propagation ; Flame speed ; Flame temperature ; Ignition ; Mapping ; Mass spectrometry ; Metal oxides ; Metallizing ; Nanoparticles ; Oxidizing agents ; Polyvinylidene fluorides ; Reaction mechanisms ; Scientific imaging ; Spectroscopy ; Temperature ; Three dimensional printing ; Videography</subject><ispartof>Combustion and flame, 2020-01, Vol.211, p.260-269</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-fbd11d43908b88b1683e935e56ebceb1e50c2880a632846630eeb53bfeeb50e83</citedby><cites>FETCH-LOGICAL-c405t-fbd11d43908b88b1683e935e56ebceb1e50c2880a632846630eeb53bfeeb50e83</cites><orcidid>0000-0002-4183-0153 ; 0000-0003-2250-8465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218019303864$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Rehwoldt, Miles C.</creatorcontrib><creatorcontrib>Wang, Haiyang</creatorcontrib><creatorcontrib>Kline, Dylan J.</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Eckman, Noah</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Agrawal, Niti R.</creatorcontrib><creatorcontrib>Zachariah, Michael R.</creatorcontrib><title>Ignition and combustion analysis of direct write fabricated aluminum/metal oxide/PVDF films</title><title>Combustion and flame</title><description>Metallized energetic composite films incorporating high mass loadings of aluminum nanoparticle fuels and metal oxide oxidizers (thermite) within a polyvinylidene fluoride (PVDF) polymer matrix were constructed via repeatable direct write additive manufacturing (3-D Printing). High speed videography, Temperature-Jump/Time of Flight Mass Spectrometry (T-Jump/TOFMS), and 2D spaciotemporal temperature mapping were used to analyze the role of composition and particle loading with respect to ignition behavior and combustion performance. This study reveals that, while the ignition temperatures of films are relatively unvaried in pressurized environments, ignition temperatures in vacuum are strongly dependent on the inclusion of thermite material and the specific type of thermite utilized. Increasing thermite mass loading results in a reduction in film flame speed and mechanical integrity but increases flame temperature. Coupled time of flight mass spectrometry reinforces and elaborates on previous findings regarding the Al/PVDF reaction mechanism as it pertains to the coupled behavior of incorporating increasing amounts of metal oxides. TOFMS highlights carbon dioxide generation from the metal oxide interaction with PVDF, leading to unintended stoichiometric considerations and distinct changes in steady burn behavior which contribute adverse factors towards flame propagation.</description><subject>3D printing</subject><subject>Aluminum</subject><subject>Carbon dioxide</subject><subject>Combustion</subject><subject>Energetics</subject><subject>Flame propagation</subject><subject>Flame speed</subject><subject>Flame temperature</subject><subject>Ignition</subject><subject>Mapping</subject><subject>Mass spectrometry</subject><subject>Metal oxides</subject><subject>Metallizing</subject><subject>Nanoparticles</subject><subject>Oxidizing agents</subject><subject>Polyvinylidene fluorides</subject><subject>Reaction mechanisms</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Temperature</subject><subject>Three dimensional printing</subject><subject>Videography</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkDFPwzAUhC0EEqXwHyyYkz7HSeqyoZZCpUowAAuDZTsvyFESFzsB-u9JlQ6MTKeT7k7vfYRcM4gZsHxWxcY1ug9dWasG4wTYIgYRQ8JPyIRlWR4li4SdkgkAgyhhAs7JRQgVAMxTzifkffPR2s66lqq2oMex0ap6H2ygrqSF9Wg6-u1th7RU2lujOiyoqvvGtn0za7BTNXU_tsDZ89tqTUtbN-GSnJWqDnh11Cl5Xd-_LB-j7dPDZnm3jUwKWReVumCsSPkChBZCs1xwXPAMsxy1Qc0wA5MIASrniUjznAOizrguDwIo-JTcjLs77z57DJ2sXO-H-4NMOOeZELmYD6nbMWW8C8FjKXfeNsrvJQN5gCkr-RemPMCUIOQAcyivxjIOf3xZ9DIYi63BEY0snP3PzC8LOIWc</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Rehwoldt, Miles C.</creator><creator>Wang, Haiyang</creator><creator>Kline, Dylan J.</creator><creator>Wu, Tao</creator><creator>Eckman, Noah</creator><creator>Wang, Peng</creator><creator>Agrawal, Niti R.</creator><creator>Zachariah, Michael R.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4183-0153</orcidid><orcidid>https://orcid.org/0000-0003-2250-8465</orcidid></search><sort><creationdate>202001</creationdate><title>Ignition and combustion analysis of direct write fabricated aluminum/metal oxide/PVDF films</title><author>Rehwoldt, Miles C. ; Wang, Haiyang ; Kline, Dylan J. ; Wu, Tao ; Eckman, Noah ; Wang, Peng ; Agrawal, Niti R. ; Zachariah, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-fbd11d43908b88b1683e935e56ebceb1e50c2880a632846630eeb53bfeeb50e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D printing</topic><topic>Aluminum</topic><topic>Carbon dioxide</topic><topic>Combustion</topic><topic>Energetics</topic><topic>Flame propagation</topic><topic>Flame speed</topic><topic>Flame temperature</topic><topic>Ignition</topic><topic>Mapping</topic><topic>Mass spectrometry</topic><topic>Metal oxides</topic><topic>Metallizing</topic><topic>Nanoparticles</topic><topic>Oxidizing agents</topic><topic>Polyvinylidene fluorides</topic><topic>Reaction mechanisms</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Temperature</topic><topic>Three dimensional printing</topic><topic>Videography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehwoldt, Miles C.</creatorcontrib><creatorcontrib>Wang, Haiyang</creatorcontrib><creatorcontrib>Kline, Dylan J.</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Eckman, Noah</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Agrawal, Niti R.</creatorcontrib><creatorcontrib>Zachariah, Michael R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehwoldt, Miles C.</au><au>Wang, Haiyang</au><au>Kline, Dylan J.</au><au>Wu, Tao</au><au>Eckman, Noah</au><au>Wang, Peng</au><au>Agrawal, Niti R.</au><au>Zachariah, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ignition and combustion analysis of direct write fabricated aluminum/metal oxide/PVDF films</atitle><jtitle>Combustion and flame</jtitle><date>2020-01</date><risdate>2020</risdate><volume>211</volume><spage>260</spage><epage>269</epage><pages>260-269</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Metallized energetic composite films incorporating high mass loadings of aluminum nanoparticle fuels and metal oxide oxidizers (thermite) within a polyvinylidene fluoride (PVDF) polymer matrix were constructed via repeatable direct write additive manufacturing (3-D Printing). High speed videography, Temperature-Jump/Time of Flight Mass Spectrometry (T-Jump/TOFMS), and 2D spaciotemporal temperature mapping were used to analyze the role of composition and particle loading with respect to ignition behavior and combustion performance. This study reveals that, while the ignition temperatures of films are relatively unvaried in pressurized environments, ignition temperatures in vacuum are strongly dependent on the inclusion of thermite material and the specific type of thermite utilized. Increasing thermite mass loading results in a reduction in film flame speed and mechanical integrity but increases flame temperature. Coupled time of flight mass spectrometry reinforces and elaborates on previous findings regarding the Al/PVDF reaction mechanism as it pertains to the coupled behavior of incorporating increasing amounts of metal oxides. TOFMS highlights carbon dioxide generation from the metal oxide interaction with PVDF, leading to unintended stoichiometric considerations and distinct changes in steady burn behavior which contribute adverse factors towards flame propagation.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2019.08.023</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4183-0153</orcidid><orcidid>https://orcid.org/0000-0003-2250-8465</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2020-01, Vol.211, p.260-269 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_proquest_journals_2333588687 |
source | Elsevier ScienceDirect Journals |
subjects | 3D printing Aluminum Carbon dioxide Combustion Energetics Flame propagation Flame speed Flame temperature Ignition Mapping Mass spectrometry Metal oxides Metallizing Nanoparticles Oxidizing agents Polyvinylidene fluorides Reaction mechanisms Scientific imaging Spectroscopy Temperature Three dimensional printing Videography |
title | Ignition and combustion analysis of direct write fabricated aluminum/metal oxide/PVDF films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ignition%20and%20combustion%20analysis%20of%20direct%20write%20fabricated%20aluminum/metal%20oxide/PVDF%20films&rft.jtitle=Combustion%20and%20flame&rft.au=Rehwoldt,%20Miles%20C.&rft.date=2020-01&rft.volume=211&rft.spage=260&rft.epage=269&rft.pages=260-269&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2019.08.023&rft_dat=%3Cproquest_cross%3E2333588687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333588687&rft_id=info:pmid/&rft_els_id=S0010218019303864&rfr_iscdi=true |