Flexible Femtojoule Energy-Consumption In-Ga-Zn-O Synaptic Transistors With Extensively Tunable Memory Time

A neuromorphic electronic system requires the component devices to not only mimic typical synaptic behaviors but also be energy-efficient, together with excellent uniformity and tunable memory time. For this purpose, we fabricated amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors with plasma-enhan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2020-01, Vol.67 (1), p.105-112
Hauptverfasser: Li, Lingkai, Shao, Yan, Wang, Xiaolin, Wu, Xiaohan, Liu, Wen-Jun, Zhang, David Wei, Ding, Shi-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue 1
container_start_page 105
container_title IEEE transactions on electron devices
container_volume 67
creator Li, Lingkai
Shao, Yan
Wang, Xiaolin
Wu, Xiaohan
Liu, Wen-Jun
Zhang, David Wei
Ding, Shi-Jin
description A neuromorphic electronic system requires the component devices to not only mimic typical synaptic behaviors but also be energy-efficient, together with excellent uniformity and tunable memory time. For this purpose, we fabricated amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors with plasma-enhanced atomic layer deposition AlO x :H dielectrics, successfully demonstrating typical synaptic behaviors, such as excitatory and inhibitory postsynaptic current, pair-pules facilitation, dynamic filter, learning and forgetting abilities and spike-timing dependent plasticity. In particular, such synaptic transistors exhibit ultralow energy consumption down to 3.18 fJ per synaptic event and tunable extensive memory time ranging from 76.6 ms to at least thousands of seconds. The ultralow energy consumption is realized by electron trapping and releasing at and near the interface between a-IGZO channel and AlO x :H dielectric under low voltages. By adjusting the concentration of oxygen vacancy defects in the a-IGZO domain adjacent to the interface by means of changing the growth temperature of the AlOx:H dielectrics, the memory time of the device can be further tuned on a large scale. Device flexibility was also demonstrated by fabricating the synaptic transistors onto polymer substrates at room temperature.
doi_str_mv 10.1109/TED.2019.2951582
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2333542121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8915736</ieee_id><sourcerecordid>2333542121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e1b9a10f0501945c3d60f194ef82e995ca7d115d9a7b5a56010970ae425b723c3</originalsourceid><addsrcrecordid>eNo9UE1Lw0AUXETBWr0LXgKet-5HNskepba1UOnBiOBl2aQvmprs1t1Emn_vlhZPb94w8x4zCN1SMqGUyId89jRhhMoJk4KKjJ2hERUixTKJk3M0IoRmWPKMX6Ir77dhTeKYjdD3vIF9XTQQzaHt7Nb2Ac4MuM8BT63xfbvramuipcELjT8MXkevg9GBLKPcaeNr31nno_e6-4pm-w4C8wvNEOW90YezL9BaF9a6hWt0UenGw81pjtHbfJZPn_FqvVhOH1e4ZJJ2GGghNSUVESFOLEq-SUgVEFQZAylFqdMNpWIjdVoILRIS4qdEQ8xEkTJe8jG6P97dOfvTg-9UiOVMeKkY51zEjDIaVOSoKp313kGldq5utRsUJepQqQqVqkOl6lRpsNwdLTUA_MszSUXKE_4HmqxyLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333542121</pqid></control><display><type>article</type><title>Flexible Femtojoule Energy-Consumption In-Ga-Zn-O Synaptic Transistors With Extensively Tunable Memory Time</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Lingkai ; Shao, Yan ; Wang, Xiaolin ; Wu, Xiaohan ; Liu, Wen-Jun ; Zhang, David Wei ; Ding, Shi-Jin</creator><creatorcontrib>Li, Lingkai ; Shao, Yan ; Wang, Xiaolin ; Wu, Xiaohan ; Liu, Wen-Jun ; Zhang, David Wei ; Ding, Shi-Jin</creatorcontrib><description>A neuromorphic electronic system requires the component devices to not only mimic typical synaptic behaviors but also be energy-efficient, together with excellent uniformity and tunable memory time. For this purpose, we fabricated amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors with plasma-enhanced atomic layer deposition AlO x :H dielectrics, successfully demonstrating typical synaptic behaviors, such as excitatory and inhibitory postsynaptic current, pair-pules facilitation, dynamic filter, learning and forgetting abilities and spike-timing dependent plasticity. In particular, such synaptic transistors exhibit ultralow energy consumption down to 3.18 fJ per synaptic event and tunable extensive memory time ranging from 76.6 ms to at least thousands of seconds. The ultralow energy consumption is realized by electron trapping and releasing at and near the interface between a-IGZO channel and AlO x :H dielectric under low voltages. By adjusting the concentration of oxygen vacancy defects in the a-IGZO domain adjacent to the interface by means of changing the growth temperature of the AlOx:H dielectrics, the memory time of the device can be further tuned on a large scale. Device flexibility was also demonstrated by fabricating the synaptic transistors onto polymer substrates at room temperature.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2019.2951582</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amorphous In-Ga-Zn-O (a-IGZO) ; Atomic layer deposition ; Atomic layer epitaxy ; Dielectrics ; Energy consumption ; energy-efficient ; flexible electronics ; Indium gallium zinc oxide ; Logic gates ; Neuromorphics ; Plasma temperature ; Room temperature ; Semiconductor devices ; Substrates ; synaptic transistors ; Thin film transistors ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2020-01, Vol.67 (1), p.105-112</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e1b9a10f0501945c3d60f194ef82e995ca7d115d9a7b5a56010970ae425b723c3</citedby><cites>FETCH-LOGICAL-c291t-e1b9a10f0501945c3d60f194ef82e995ca7d115d9a7b5a56010970ae425b723c3</cites><orcidid>0000-0002-5766-089X ; 0000-0003-4217-8838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8915736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8915736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Lingkai</creatorcontrib><creatorcontrib>Shao, Yan</creatorcontrib><creatorcontrib>Wang, Xiaolin</creatorcontrib><creatorcontrib>Wu, Xiaohan</creatorcontrib><creatorcontrib>Liu, Wen-Jun</creatorcontrib><creatorcontrib>Zhang, David Wei</creatorcontrib><creatorcontrib>Ding, Shi-Jin</creatorcontrib><title>Flexible Femtojoule Energy-Consumption In-Ga-Zn-O Synaptic Transistors With Extensively Tunable Memory Time</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>A neuromorphic electronic system requires the component devices to not only mimic typical synaptic behaviors but also be energy-efficient, together with excellent uniformity and tunable memory time. For this purpose, we fabricated amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors with plasma-enhanced atomic layer deposition AlO x :H dielectrics, successfully demonstrating typical synaptic behaviors, such as excitatory and inhibitory postsynaptic current, pair-pules facilitation, dynamic filter, learning and forgetting abilities and spike-timing dependent plasticity. In particular, such synaptic transistors exhibit ultralow energy consumption down to 3.18 fJ per synaptic event and tunable extensive memory time ranging from 76.6 ms to at least thousands of seconds. The ultralow energy consumption is realized by electron trapping and releasing at and near the interface between a-IGZO channel and AlO x :H dielectric under low voltages. By adjusting the concentration of oxygen vacancy defects in the a-IGZO domain adjacent to the interface by means of changing the growth temperature of the AlOx:H dielectrics, the memory time of the device can be further tuned on a large scale. Device flexibility was also demonstrated by fabricating the synaptic transistors onto polymer substrates at room temperature.</description><subject>Amorphous In-Ga-Zn-O (a-IGZO)</subject><subject>Atomic layer deposition</subject><subject>Atomic layer epitaxy</subject><subject>Dielectrics</subject><subject>Energy consumption</subject><subject>energy-efficient</subject><subject>flexible electronics</subject><subject>Indium gallium zinc oxide</subject><subject>Logic gates</subject><subject>Neuromorphics</subject><subject>Plasma temperature</subject><subject>Room temperature</subject><subject>Semiconductor devices</subject><subject>Substrates</subject><subject>synaptic transistors</subject><subject>Thin film transistors</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1Lw0AUXETBWr0LXgKet-5HNskepba1UOnBiOBl2aQvmprs1t1Emn_vlhZPb94w8x4zCN1SMqGUyId89jRhhMoJk4KKjJ2hERUixTKJk3M0IoRmWPKMX6Ir77dhTeKYjdD3vIF9XTQQzaHt7Nb2Ac4MuM8BT63xfbvramuipcELjT8MXkevg9GBLKPcaeNr31nno_e6-4pm-w4C8wvNEOW90YezL9BaF9a6hWt0UenGw81pjtHbfJZPn_FqvVhOH1e4ZJJ2GGghNSUVESFOLEq-SUgVEFQZAylFqdMNpWIjdVoILRIS4qdEQ8xEkTJe8jG6P97dOfvTg-9UiOVMeKkY51zEjDIaVOSoKp313kGldq5utRsUJepQqQqVqkOl6lRpsNwdLTUA_MszSUXKE_4HmqxyLA</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Li, Lingkai</creator><creator>Shao, Yan</creator><creator>Wang, Xiaolin</creator><creator>Wu, Xiaohan</creator><creator>Liu, Wen-Jun</creator><creator>Zhang, David Wei</creator><creator>Ding, Shi-Jin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5766-089X</orcidid><orcidid>https://orcid.org/0000-0003-4217-8838</orcidid></search><sort><creationdate>202001</creationdate><title>Flexible Femtojoule Energy-Consumption In-Ga-Zn-O Synaptic Transistors With Extensively Tunable Memory Time</title><author>Li, Lingkai ; Shao, Yan ; Wang, Xiaolin ; Wu, Xiaohan ; Liu, Wen-Jun ; Zhang, David Wei ; Ding, Shi-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e1b9a10f0501945c3d60f194ef82e995ca7d115d9a7b5a56010970ae425b723c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amorphous In-Ga-Zn-O (a-IGZO)</topic><topic>Atomic layer deposition</topic><topic>Atomic layer epitaxy</topic><topic>Dielectrics</topic><topic>Energy consumption</topic><topic>energy-efficient</topic><topic>flexible electronics</topic><topic>Indium gallium zinc oxide</topic><topic>Logic gates</topic><topic>Neuromorphics</topic><topic>Plasma temperature</topic><topic>Room temperature</topic><topic>Semiconductor devices</topic><topic>Substrates</topic><topic>synaptic transistors</topic><topic>Thin film transistors</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lingkai</creatorcontrib><creatorcontrib>Shao, Yan</creatorcontrib><creatorcontrib>Wang, Xiaolin</creatorcontrib><creatorcontrib>Wu, Xiaohan</creatorcontrib><creatorcontrib>Liu, Wen-Jun</creatorcontrib><creatorcontrib>Zhang, David Wei</creatorcontrib><creatorcontrib>Ding, Shi-Jin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Lingkai</au><au>Shao, Yan</au><au>Wang, Xiaolin</au><au>Wu, Xiaohan</au><au>Liu, Wen-Jun</au><au>Zhang, David Wei</au><au>Ding, Shi-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Femtojoule Energy-Consumption In-Ga-Zn-O Synaptic Transistors With Extensively Tunable Memory Time</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-01</date><risdate>2020</risdate><volume>67</volume><issue>1</issue><spage>105</spage><epage>112</epage><pages>105-112</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>A neuromorphic electronic system requires the component devices to not only mimic typical synaptic behaviors but also be energy-efficient, together with excellent uniformity and tunable memory time. For this purpose, we fabricated amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors with plasma-enhanced atomic layer deposition AlO x :H dielectrics, successfully demonstrating typical synaptic behaviors, such as excitatory and inhibitory postsynaptic current, pair-pules facilitation, dynamic filter, learning and forgetting abilities and spike-timing dependent plasticity. In particular, such synaptic transistors exhibit ultralow energy consumption down to 3.18 fJ per synaptic event and tunable extensive memory time ranging from 76.6 ms to at least thousands of seconds. The ultralow energy consumption is realized by electron trapping and releasing at and near the interface between a-IGZO channel and AlO x :H dielectric under low voltages. By adjusting the concentration of oxygen vacancy defects in the a-IGZO domain adjacent to the interface by means of changing the growth temperature of the AlOx:H dielectrics, the memory time of the device can be further tuned on a large scale. Device flexibility was also demonstrated by fabricating the synaptic transistors onto polymer substrates at room temperature.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2019.2951582</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5766-089X</orcidid><orcidid>https://orcid.org/0000-0003-4217-8838</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2020-01, Vol.67 (1), p.105-112
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2333542121
source IEEE Electronic Library (IEL)
subjects Amorphous In-Ga-Zn-O (a-IGZO)
Atomic layer deposition
Atomic layer epitaxy
Dielectrics
Energy consumption
energy-efficient
flexible electronics
Indium gallium zinc oxide
Logic gates
Neuromorphics
Plasma temperature
Room temperature
Semiconductor devices
Substrates
synaptic transistors
Thin film transistors
Transistors
title Flexible Femtojoule Energy-Consumption In-Ga-Zn-O Synaptic Transistors With Extensively Tunable Memory Time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T17%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Femtojoule%20Energy-Consumption%20In-Ga-Zn-O%20Synaptic%20Transistors%20With%20Extensively%20Tunable%20Memory%20Time&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Li,%20Lingkai&rft.date=2020-01&rft.volume=67&rft.issue=1&rft.spage=105&rft.epage=112&rft.pages=105-112&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2019.2951582&rft_dat=%3Cproquest_RIE%3E2333542121%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333542121&rft_id=info:pmid/&rft_ieee_id=8915736&rfr_iscdi=true