A Multi-Objective Evolutionary Approach for Preprocessing Imbalanced Microarray Datasets

Microarray datasets are usually imbalanced with a huge number of features and few samples. Most of the existing methods consider classification accuracy as the performance measure while converting the imbalanced datasets into a balanced one and selecting the optimal feature subset, resulting in over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computing in science & engineering 2020-01, Vol.22 (1), p.88-100
Hauptverfasser: Rangasamy, DeviPriya, Rajappan, Sivaraj, Natesan, Mohan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue 1
container_start_page 88
container_title Computing in science & engineering
container_volume 22
creator Rangasamy, DeviPriya
Rajappan, Sivaraj
Natesan, Mohan
description Microarray datasets are usually imbalanced with a huge number of features and few samples. Most of the existing methods consider classification accuracy as the performance measure while converting the imbalanced datasets into a balanced one and selecting the optimal feature subset, resulting in overfitting. To address the above-mentioned issue, in this paper, a multi-objective genetic algorithm approach is proposed that utilizes a combination of evaluation metrics for both imbalanced data processing and feature selection. The proposed methodology is implemented in seven real datasets taken from public repositories. The cross-validation results prove that the proposed methodology outperforms existing methods in all seven datasets. The proposed methodology serves as a simple and efficient method for preprocessing microarray datasets and helps clinical practitioners in making strategic decisions with the help of a few features. It will also greatly reduce the time spent on processing unnecessary features.
doi_str_mv 10.1109/MCSE.2018.2873869
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2333538745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8486970</ieee_id><sourcerecordid>2333538745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-739641e605eb6ce08a3506e114f4cd16103a70075a3346675919a0a4a5e751173</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy6k_3MsdSqhZYKKvS2bNOJpqRJ3U0K_fduaPE0M8wzM--8hNwDGwGw7Gkx-ZiOUgZmlBrNjcouyACkNAlXanXZ5ykkmQJ5TW5C2DLGhMnkgKzGdNFVbZks11vM2_KAdHpoqq4tm9r5Ix3v975x-Q8tGk_fPcYqxxDK-pvOdmtXuTrHDV2UeaS8d0f67FoXsA235KpwVcC7cxySr5fp5-QtmS9fZ5PxPMlTIdtE80wJQMUkrlWOzDgumUIAUYh8AwoYd5oxLR3nQiktM8gcc8JJ1BJA8yF5PO2Nyn47DK3dNp2v40mbcs4lN1rISMGJijpD8FjYvS938UELzPYG2t5A2xtozwbGmYfTTImI_7wRsacZ_wPN82t6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333538745</pqid></control><display><type>article</type><title>A Multi-Objective Evolutionary Approach for Preprocessing Imbalanced Microarray Datasets</title><source>IEEE Electronic Library (IEL)</source><creator>Rangasamy, DeviPriya ; Rajappan, Sivaraj ; Natesan, Mohan</creator><creatorcontrib>Rangasamy, DeviPriya ; Rajappan, Sivaraj ; Natesan, Mohan</creatorcontrib><description>Microarray datasets are usually imbalanced with a huge number of features and few samples. Most of the existing methods consider classification accuracy as the performance measure while converting the imbalanced datasets into a balanced one and selecting the optimal feature subset, resulting in overfitting. To address the above-mentioned issue, in this paper, a multi-objective genetic algorithm approach is proposed that utilizes a combination of evaluation metrics for both imbalanced data processing and feature selection. The proposed methodology is implemented in seven real datasets taken from public repositories. The cross-validation results prove that the proposed methodology outperforms existing methods in all seven datasets. The proposed methodology serves as a simple and efficient method for preprocessing microarray datasets and helps clinical practitioners in making strategic decisions with the help of a few features. It will also greatly reduce the time spent on processing unnecessary features.</description><identifier>ISSN: 1521-9615</identifier><identifier>EISSN: 1558-366X</identifier><identifier>DOI: 10.1109/MCSE.2018.2873869</identifier><identifier>CODEN: CSENFA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification algorithms ; Data models ; Data processing ; Datasets ; Feature extraction ; Gene expression ; Genetic algorithms ; Methodology ; Multiple objective analysis ; Preprocessing ; Sensitivity ; Task analysis</subject><ispartof>Computing in science &amp; engineering, 2020-01, Vol.22 (1), p.88-100</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-739641e605eb6ce08a3506e114f4cd16103a70075a3346675919a0a4a5e751173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8486970$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8486970$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rangasamy, DeviPriya</creatorcontrib><creatorcontrib>Rajappan, Sivaraj</creatorcontrib><creatorcontrib>Natesan, Mohan</creatorcontrib><title>A Multi-Objective Evolutionary Approach for Preprocessing Imbalanced Microarray Datasets</title><title>Computing in science &amp; engineering</title><addtitle>CISE-M</addtitle><description>Microarray datasets are usually imbalanced with a huge number of features and few samples. Most of the existing methods consider classification accuracy as the performance measure while converting the imbalanced datasets into a balanced one and selecting the optimal feature subset, resulting in overfitting. To address the above-mentioned issue, in this paper, a multi-objective genetic algorithm approach is proposed that utilizes a combination of evaluation metrics for both imbalanced data processing and feature selection. The proposed methodology is implemented in seven real datasets taken from public repositories. The cross-validation results prove that the proposed methodology outperforms existing methods in all seven datasets. The proposed methodology serves as a simple and efficient method for preprocessing microarray datasets and helps clinical practitioners in making strategic decisions with the help of a few features. It will also greatly reduce the time spent on processing unnecessary features.</description><subject>Classification algorithms</subject><subject>Data models</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Gene expression</subject><subject>Genetic algorithms</subject><subject>Methodology</subject><subject>Multiple objective analysis</subject><subject>Preprocessing</subject><subject>Sensitivity</subject><subject>Task analysis</subject><issn>1521-9615</issn><issn>1558-366X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy6k_3MsdSqhZYKKvS2bNOJpqRJ3U0K_fduaPE0M8wzM--8hNwDGwGw7Gkx-ZiOUgZmlBrNjcouyACkNAlXanXZ5ykkmQJ5TW5C2DLGhMnkgKzGdNFVbZks11vM2_KAdHpoqq4tm9r5Ix3v975x-Q8tGk_fPcYqxxDK-pvOdmtXuTrHDV2UeaS8d0f67FoXsA235KpwVcC7cxySr5fp5-QtmS9fZ5PxPMlTIdtE80wJQMUkrlWOzDgumUIAUYh8AwoYd5oxLR3nQiktM8gcc8JJ1BJA8yF5PO2Nyn47DK3dNp2v40mbcs4lN1rISMGJijpD8FjYvS938UELzPYG2t5A2xtozwbGmYfTTImI_7wRsacZ_wPN82t6</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Rangasamy, DeviPriya</creator><creator>Rajappan, Sivaraj</creator><creator>Natesan, Mohan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202001</creationdate><title>A Multi-Objective Evolutionary Approach for Preprocessing Imbalanced Microarray Datasets</title><author>Rangasamy, DeviPriya ; Rajappan, Sivaraj ; Natesan, Mohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-739641e605eb6ce08a3506e114f4cd16103a70075a3346675919a0a4a5e751173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification algorithms</topic><topic>Data models</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Gene expression</topic><topic>Genetic algorithms</topic><topic>Methodology</topic><topic>Multiple objective analysis</topic><topic>Preprocessing</topic><topic>Sensitivity</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rangasamy, DeviPriya</creatorcontrib><creatorcontrib>Rajappan, Sivaraj</creatorcontrib><creatorcontrib>Natesan, Mohan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computing in science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rangasamy, DeviPriya</au><au>Rajappan, Sivaraj</au><au>Natesan, Mohan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Objective Evolutionary Approach for Preprocessing Imbalanced Microarray Datasets</atitle><jtitle>Computing in science &amp; engineering</jtitle><stitle>CISE-M</stitle><date>2020-01</date><risdate>2020</risdate><volume>22</volume><issue>1</issue><spage>88</spage><epage>100</epage><pages>88-100</pages><issn>1521-9615</issn><eissn>1558-366X</eissn><coden>CSENFA</coden><abstract>Microarray datasets are usually imbalanced with a huge number of features and few samples. Most of the existing methods consider classification accuracy as the performance measure while converting the imbalanced datasets into a balanced one and selecting the optimal feature subset, resulting in overfitting. To address the above-mentioned issue, in this paper, a multi-objective genetic algorithm approach is proposed that utilizes a combination of evaluation metrics for both imbalanced data processing and feature selection. The proposed methodology is implemented in seven real datasets taken from public repositories. The cross-validation results prove that the proposed methodology outperforms existing methods in all seven datasets. The proposed methodology serves as a simple and efficient method for preprocessing microarray datasets and helps clinical practitioners in making strategic decisions with the help of a few features. It will also greatly reduce the time spent on processing unnecessary features.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MCSE.2018.2873869</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1521-9615
ispartof Computing in science & engineering, 2020-01, Vol.22 (1), p.88-100
issn 1521-9615
1558-366X
language eng
recordid cdi_proquest_journals_2333538745
source IEEE Electronic Library (IEL)
subjects Classification algorithms
Data models
Data processing
Datasets
Feature extraction
Gene expression
Genetic algorithms
Methodology
Multiple objective analysis
Preprocessing
Sensitivity
Task analysis
title A Multi-Objective Evolutionary Approach for Preprocessing Imbalanced Microarray Datasets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Objective%20Evolutionary%20Approach%20for%20Preprocessing%20Imbalanced%20Microarray%20Datasets&rft.jtitle=Computing%20in%20science%20&%20engineering&rft.au=Rangasamy,%20DeviPriya&rft.date=2020-01&rft.volume=22&rft.issue=1&rft.spage=88&rft.epage=100&rft.pages=88-100&rft.issn=1521-9615&rft.eissn=1558-366X&rft.coden=CSENFA&rft_id=info:doi/10.1109/MCSE.2018.2873869&rft_dat=%3Cproquest_RIE%3E2333538745%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333538745&rft_id=info:pmid/&rft_ieee_id=8486970&rfr_iscdi=true