E-Band RF MEMS Differential Reflection-Type Phase Shifter
A systematic approach in the design methodology, leading to the optimization of a differential reflection-type phase shifter (RTPS), is presented. The key parameters of the quadrature coupler and the reflective loads are analyzed for optimum RTPS performance, showing that: 1) equality between the co...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2019-12, Vol.67 (12), p.4700-4713 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4713 |
---|---|
container_issue | 12 |
container_start_page | 4700 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 67 |
creator | Li, Xiao Chan, King Yuk Ramer, Rodica |
description | A systematic approach in the design methodology, leading to the optimization of a differential reflection-type phase shifter (RTPS), is presented. The key parameters of the quadrature coupler and the reflective loads are analyzed for optimum RTPS performance, showing that: 1) equality between the coupling and through transmission coefficients provides the best return and insertion loss; 2) a minimized coupler reflection coefficient with negative phase optimizes the return loss and the phase performance; and 3) a wide tunable reflective load with minimized resistance assures lower insertion loss and larger phase range. The even-odd mode analysis leads to the coupler miniaturization. The differential microstrip line dimensions are determined by the minimum feature size of our fabrication process. By choosing the separation between the coupled lines, the even- and odd-mode characteristic impedances satisfy the derived design equations for equalized quadrature outputs and provide the matching capacitance. By exploiting the virtual ground of the differential structure, a novel RF MEMS reconfigurable short circuit is introduced for the reflective loads aiming at 180° phase shift range and low insertion loss. Over the 70-86-GHz range, the measurements show good agreement with the simulations. The measured RTPS achieves a 195.6° phase shift range with a phase error less than 8.6° and insertion loss error less than 0.7 dB. For all phase states, the reflection coefficients are below -18 dB, and at 74 GHz, the insertion loss is 4.4 ± 0.5 dB. |
doi_str_mv | 10.1109/TMTT.2019.2944623 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2333538726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8894172</ieee_id><sourcerecordid>2333538726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3f230969b52a9ab929bbc7ca98a4c021baf6b3d703c1f393e8f030ba997851c43</originalsourceid><addsrcrecordid>eNo9kMFKAzEURYMoWKsfIG4GXKcmeZmZvKXWVoUWpR3XIUkTOqXO1GS66N87pcXV48K598Eh5J6zEecMn6p5VY0E4zgSKGUh4IIMeJ6XFIuSXZIBY1xRlIpdk5uUNn2UOVMDghP6YppVtphm88l8mb3WIfjom64222zhw9a7rm4bWh12Pvtam-Sz5boOnY-35CqYbfJ35zsk39NJNX6ns8-3j_HzjDqB0FEIAhgWaHNh0FgUaK0rnUFlpGOCWxMKC6uSgeMBELwKDJg1iKXKuZMwJI-n3V1sf_c-dXrT7mPTv9QCAHJQpSh6ip8oF9uUog96F-sfEw-aM300pI-G9NGQPhvqOw-nTu29_-eVQslLAX_OG1-X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333538726</pqid></control><display><type>article</type><title>E-Band RF MEMS Differential Reflection-Type Phase Shifter</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xiao ; Chan, King Yuk ; Ramer, Rodica</creator><creatorcontrib>Li, Xiao ; Chan, King Yuk ; Ramer, Rodica</creatorcontrib><description>A systematic approach in the design methodology, leading to the optimization of a differential reflection-type phase shifter (RTPS), is presented. The key parameters of the quadrature coupler and the reflective loads are analyzed for optimum RTPS performance, showing that: 1) equality between the coupling and through transmission coefficients provides the best return and insertion loss; 2) a minimized coupler reflection coefficient with negative phase optimizes the return loss and the phase performance; and 3) a wide tunable reflective load with minimized resistance assures lower insertion loss and larger phase range. The even-odd mode analysis leads to the coupler miniaturization. The differential microstrip line dimensions are determined by the minimum feature size of our fabrication process. By choosing the separation between the coupled lines, the even- and odd-mode characteristic impedances satisfy the derived design equations for equalized quadrature outputs and provide the matching capacitance. By exploiting the virtual ground of the differential structure, a novel RF MEMS reconfigurable short circuit is introduced for the reflective loads aiming at 180° phase shift range and low insertion loss. Over the 70-86-GHz range, the measurements show good agreement with the simulations. The measured RTPS achieves a 195.6° phase shift range with a phase error less than 8.6° and insertion loss error less than 0.7 dB. For all phase states, the reflection coefficients are below -18 dB, and at 74 GHz, the insertion loss is 4.4 ± 0.5 dB.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2019.2944623</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coupler ; Couplers ; Couplings ; Design optimization ; differential phase shifter ; distributed open–short (OS) de-embedding ; E-band ; Insertion loss ; Load resistance ; Microelectromechanical systems ; Micromechanical devices ; Microstrip transmission lines ; millimeter waves ; Miniaturization ; Phase error ; Phase shift ; Phase shifters ; Phased arrays ; Quadratures ; Radio frequency ; Reflectance ; Reflection ; reflection-type phase shifter (RTPS) ; RF MEMS ; Short circuits ; Spectrum allocation</subject><ispartof>IEEE transactions on microwave theory and techniques, 2019-12, Vol.67 (12), p.4700-4713</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3f230969b52a9ab929bbc7ca98a4c021baf6b3d703c1f393e8f030ba997851c43</citedby><cites>FETCH-LOGICAL-c293t-3f230969b52a9ab929bbc7ca98a4c021baf6b3d703c1f393e8f030ba997851c43</cites><orcidid>0000-0002-4045-5267 ; 0000-0002-1899-5654 ; 0000-0001-9509-6364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8894172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8894172$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Chan, King Yuk</creatorcontrib><creatorcontrib>Ramer, Rodica</creatorcontrib><title>E-Band RF MEMS Differential Reflection-Type Phase Shifter</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>A systematic approach in the design methodology, leading to the optimization of a differential reflection-type phase shifter (RTPS), is presented. The key parameters of the quadrature coupler and the reflective loads are analyzed for optimum RTPS performance, showing that: 1) equality between the coupling and through transmission coefficients provides the best return and insertion loss; 2) a minimized coupler reflection coefficient with negative phase optimizes the return loss and the phase performance; and 3) a wide tunable reflective load with minimized resistance assures lower insertion loss and larger phase range. The even-odd mode analysis leads to the coupler miniaturization. The differential microstrip line dimensions are determined by the minimum feature size of our fabrication process. By choosing the separation between the coupled lines, the even- and odd-mode characteristic impedances satisfy the derived design equations for equalized quadrature outputs and provide the matching capacitance. By exploiting the virtual ground of the differential structure, a novel RF MEMS reconfigurable short circuit is introduced for the reflective loads aiming at 180° phase shift range and low insertion loss. Over the 70-86-GHz range, the measurements show good agreement with the simulations. The measured RTPS achieves a 195.6° phase shift range with a phase error less than 8.6° and insertion loss error less than 0.7 dB. For all phase states, the reflection coefficients are below -18 dB, and at 74 GHz, the insertion loss is 4.4 ± 0.5 dB.</description><subject>Coupler</subject><subject>Couplers</subject><subject>Couplings</subject><subject>Design optimization</subject><subject>differential phase shifter</subject><subject>distributed open–short (OS) de-embedding</subject><subject>E-band</subject><subject>Insertion loss</subject><subject>Load resistance</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Microstrip transmission lines</subject><subject>millimeter waves</subject><subject>Miniaturization</subject><subject>Phase error</subject><subject>Phase shift</subject><subject>Phase shifters</subject><subject>Phased arrays</subject><subject>Quadratures</subject><subject>Radio frequency</subject><subject>Reflectance</subject><subject>Reflection</subject><subject>reflection-type phase shifter (RTPS)</subject><subject>RF MEMS</subject><subject>Short circuits</subject><subject>Spectrum allocation</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEURYMoWKsfIG4GXKcmeZmZvKXWVoUWpR3XIUkTOqXO1GS66N87pcXV48K598Eh5J6zEecMn6p5VY0E4zgSKGUh4IIMeJ6XFIuSXZIBY1xRlIpdk5uUNn2UOVMDghP6YppVtphm88l8mb3WIfjom64222zhw9a7rm4bWh12Pvtam-Sz5boOnY-35CqYbfJ35zsk39NJNX6ns8-3j_HzjDqB0FEIAhgWaHNh0FgUaK0rnUFlpGOCWxMKC6uSgeMBELwKDJg1iKXKuZMwJI-n3V1sf_c-dXrT7mPTv9QCAHJQpSh6ip8oF9uUog96F-sfEw-aM300pI-G9NGQPhvqOw-nTu29_-eVQslLAX_OG1-X</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Li, Xiao</creator><creator>Chan, King Yuk</creator><creator>Ramer, Rodica</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4045-5267</orcidid><orcidid>https://orcid.org/0000-0002-1899-5654</orcidid><orcidid>https://orcid.org/0000-0001-9509-6364</orcidid></search><sort><creationdate>20191201</creationdate><title>E-Band RF MEMS Differential Reflection-Type Phase Shifter</title><author>Li, Xiao ; Chan, King Yuk ; Ramer, Rodica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3f230969b52a9ab929bbc7ca98a4c021baf6b3d703c1f393e8f030ba997851c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coupler</topic><topic>Couplers</topic><topic>Couplings</topic><topic>Design optimization</topic><topic>differential phase shifter</topic><topic>distributed open–short (OS) de-embedding</topic><topic>E-band</topic><topic>Insertion loss</topic><topic>Load resistance</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Microstrip transmission lines</topic><topic>millimeter waves</topic><topic>Miniaturization</topic><topic>Phase error</topic><topic>Phase shift</topic><topic>Phase shifters</topic><topic>Phased arrays</topic><topic>Quadratures</topic><topic>Radio frequency</topic><topic>Reflectance</topic><topic>Reflection</topic><topic>reflection-type phase shifter (RTPS)</topic><topic>RF MEMS</topic><topic>Short circuits</topic><topic>Spectrum allocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Chan, King Yuk</creatorcontrib><creatorcontrib>Ramer, Rodica</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xiao</au><au>Chan, King Yuk</au><au>Ramer, Rodica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>E-Band RF MEMS Differential Reflection-Type Phase Shifter</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>67</volume><issue>12</issue><spage>4700</spage><epage>4713</epage><pages>4700-4713</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>A systematic approach in the design methodology, leading to the optimization of a differential reflection-type phase shifter (RTPS), is presented. The key parameters of the quadrature coupler and the reflective loads are analyzed for optimum RTPS performance, showing that: 1) equality between the coupling and through transmission coefficients provides the best return and insertion loss; 2) a minimized coupler reflection coefficient with negative phase optimizes the return loss and the phase performance; and 3) a wide tunable reflective load with minimized resistance assures lower insertion loss and larger phase range. The even-odd mode analysis leads to the coupler miniaturization. The differential microstrip line dimensions are determined by the minimum feature size of our fabrication process. By choosing the separation between the coupled lines, the even- and odd-mode characteristic impedances satisfy the derived design equations for equalized quadrature outputs and provide the matching capacitance. By exploiting the virtual ground of the differential structure, a novel RF MEMS reconfigurable short circuit is introduced for the reflective loads aiming at 180° phase shift range and low insertion loss. Over the 70-86-GHz range, the measurements show good agreement with the simulations. The measured RTPS achieves a 195.6° phase shift range with a phase error less than 8.6° and insertion loss error less than 0.7 dB. For all phase states, the reflection coefficients are below -18 dB, and at 74 GHz, the insertion loss is 4.4 ± 0.5 dB.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2019.2944623</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4045-5267</orcidid><orcidid>https://orcid.org/0000-0002-1899-5654</orcidid><orcidid>https://orcid.org/0000-0001-9509-6364</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2019-12, Vol.67 (12), p.4700-4713 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_proquest_journals_2333538726 |
source | IEEE Electronic Library (IEL) |
subjects | Coupler Couplers Couplings Design optimization differential phase shifter distributed open–short (OS) de-embedding E-band Insertion loss Load resistance Microelectromechanical systems Micromechanical devices Microstrip transmission lines millimeter waves Miniaturization Phase error Phase shift Phase shifters Phased arrays Quadratures Radio frequency Reflectance Reflection reflection-type phase shifter (RTPS) RF MEMS Short circuits Spectrum allocation |
title | E-Band RF MEMS Differential Reflection-Type Phase Shifter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=E-Band%20RF%20MEMS%20Differential%20Reflection-Type%20Phase%20Shifter&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Li,%20Xiao&rft.date=2019-12-01&rft.volume=67&rft.issue=12&rft.spage=4700&rft.epage=4713&rft.pages=4700-4713&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2019.2944623&rft_dat=%3Cproquest_RIE%3E2333538726%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333538726&rft_id=info:pmid/&rft_ieee_id=8894172&rfr_iscdi=true |