Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH

A glassy carbon electrode modified with silver nanoparticles was employed as a nitrate sensor to give a calibration curve with a sensitivity of 2.6 μA μM −1  cm −2 and a LOD of 4.1 μM NO 3 − at a neutral pH. The calibration curve was generated using rotating disc voltammetry coupled with constant po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied electrochemistry 2020, Vol.50 (1), p.125-138
Hauptverfasser: Fox, Catherine M., Breslin, Carmel B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue 1
container_start_page 125
container_title Journal of applied electrochemistry
container_volume 50
creator Fox, Catherine M.
Breslin, Carmel B.
description A glassy carbon electrode modified with silver nanoparticles was employed as a nitrate sensor to give a calibration curve with a sensitivity of 2.6 μA μM −1  cm −2 and a LOD of 4.1 μM NO 3 − at a neutral pH. The calibration curve was generated using rotating disc voltammetry coupled with constant potential amperometry, giving efficient diffusion of the nitrate to the surface. Reasonably good selectivity for nitrate was observed in the presence of nitrite, chloride and phosphate anions. The nitrate diffusion coefficient was estimated as 1.41 × 10 −5 to 1.73 × 10 −5  cm 2  s −1 using a combination of cyclic voltammetry and rotating disc voltammetry, while the rate constant for the nitrate reduction reaction was estimated as 0.11 cm s −1 . Some deviations from the Randles–Sevick and Levich equations were seen at higher scan rates, consistent with the slow kinetics and nitrate adsorption. While stable silver nanoparticles were electrochemically formed in the solution phase and incorporated within a hydrogel matrix, the best approach in forming the nitrate sensor was the direct electrodeposition of silver nanoparticles at glassy carbon at − 0.50 V versus Ag|Ag + following a 60-min seeding period at the open-circuit potential. Graphic abstract
doi_str_mv 10.1007/s10800-019-01374-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2333416960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333416960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-98dd99695c24f6ee16d55af2434fb1faaf4112344f7d52b1900b92512678a0773</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXA9ejLx3xkKaVaQXCj4C6kmcSmTDNjkgou_edmOoo7F4_wwjn3wUXoksA1AahvIoEGoAAi8rCaF-wIzUhZ06JpWHOMZgCUFI0gr6foLMYtAAha8Rn6WnZGp9Drjdk5rTps-7BTyfUe9xZH132YgL3y_aBCcrozESvf4rQxLmA1DF2WRjpi58dfHEy71wd_5FqTjP5N8y4FlcaEhL3Z56XDw-ocnVjVRXPx887Ry93yebEqHp_uHxa3j4VmRKRCNG0rRCVKTbmtjCFVW5bKUs64XROrlOWEUMa5rduSrokAWAtaElrVjYK6ZnN0NeUOoX_fm5jktt8Hn09KyhjjpBIVZIpOlA59jMFYOQS3U-FTEpBj1XKqWuaq5aFqybLEJilm2L-Z8Bf9j_UNgGODOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333416960</pqid></control><display><type>article</type><title>Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH</title><source>SpringerLink Journals</source><creator>Fox, Catherine M. ; Breslin, Carmel B.</creator><creatorcontrib>Fox, Catherine M. ; Breslin, Carmel B.</creatorcontrib><description>A glassy carbon electrode modified with silver nanoparticles was employed as a nitrate sensor to give a calibration curve with a sensitivity of 2.6 μA μM −1  cm −2 and a LOD of 4.1 μM NO 3 − at a neutral pH. The calibration curve was generated using rotating disc voltammetry coupled with constant potential amperometry, giving efficient diffusion of the nitrate to the surface. Reasonably good selectivity for nitrate was observed in the presence of nitrite, chloride and phosphate anions. The nitrate diffusion coefficient was estimated as 1.41 × 10 −5 to 1.73 × 10 −5  cm 2  s −1 using a combination of cyclic voltammetry and rotating disc voltammetry, while the rate constant for the nitrate reduction reaction was estimated as 0.11 cm s −1 . Some deviations from the Randles–Sevick and Levich equations were seen at higher scan rates, consistent with the slow kinetics and nitrate adsorption. While stable silver nanoparticles were electrochemically formed in the solution phase and incorporated within a hydrogel matrix, the best approach in forming the nitrate sensor was the direct electrodeposition of silver nanoparticles at glassy carbon at − 0.50 V versus Ag|Ag + following a 60-min seeding period at the open-circuit potential. Graphic abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-019-01374-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Calibration ; Chemical reduction ; Chemistry ; Chemistry and Materials Science ; Circuits ; Diffusion coefficient ; Electrical measurement ; Electrochemistry ; Glassy carbon ; Gold ; Hydrogels ; Industrial Chemistry/Chemical Engineering ; Nanoparticles ; Nitrates ; Physical Chemistry ; Reaction kinetics ; Research Article ; Rotating disks ; Rotation ; Selectivity ; Sensors ; Silver ; Voltammetry</subject><ispartof>Journal of applied electrochemistry, 2020, Vol.50 (1), p.125-138</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-98dd99695c24f6ee16d55af2434fb1faaf4112344f7d52b1900b92512678a0773</citedby><cites>FETCH-LOGICAL-c319t-98dd99695c24f6ee16d55af2434fb1faaf4112344f7d52b1900b92512678a0773</cites><orcidid>0000-0002-0586-5375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-019-01374-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-019-01374-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fox, Catherine M.</creatorcontrib><creatorcontrib>Breslin, Carmel B.</creatorcontrib><title>Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>A glassy carbon electrode modified with silver nanoparticles was employed as a nitrate sensor to give a calibration curve with a sensitivity of 2.6 μA μM −1  cm −2 and a LOD of 4.1 μM NO 3 − at a neutral pH. The calibration curve was generated using rotating disc voltammetry coupled with constant potential amperometry, giving efficient diffusion of the nitrate to the surface. Reasonably good selectivity for nitrate was observed in the presence of nitrite, chloride and phosphate anions. The nitrate diffusion coefficient was estimated as 1.41 × 10 −5 to 1.73 × 10 −5  cm 2  s −1 using a combination of cyclic voltammetry and rotating disc voltammetry, while the rate constant for the nitrate reduction reaction was estimated as 0.11 cm s −1 . Some deviations from the Randles–Sevick and Levich equations were seen at higher scan rates, consistent with the slow kinetics and nitrate adsorption. While stable silver nanoparticles were electrochemically formed in the solution phase and incorporated within a hydrogel matrix, the best approach in forming the nitrate sensor was the direct electrodeposition of silver nanoparticles at glassy carbon at − 0.50 V versus Ag|Ag + following a 60-min seeding period at the open-circuit potential. Graphic abstract</description><subject>Calibration</subject><subject>Chemical reduction</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Circuits</subject><subject>Diffusion coefficient</subject><subject>Electrical measurement</subject><subject>Electrochemistry</subject><subject>Glassy carbon</subject><subject>Gold</subject><subject>Hydrogels</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Nanoparticles</subject><subject>Nitrates</subject><subject>Physical Chemistry</subject><subject>Reaction kinetics</subject><subject>Research Article</subject><subject>Rotating disks</subject><subject>Rotation</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>Silver</subject><subject>Voltammetry</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wFXA9ejLx3xkKaVaQXCj4C6kmcSmTDNjkgou_edmOoo7F4_wwjn3wUXoksA1AahvIoEGoAAi8rCaF-wIzUhZ06JpWHOMZgCUFI0gr6foLMYtAAha8Rn6WnZGp9Drjdk5rTps-7BTyfUe9xZH132YgL3y_aBCcrozESvf4rQxLmA1DF2WRjpi58dfHEy71wd_5FqTjP5N8y4FlcaEhL3Z56XDw-ocnVjVRXPx887Ry93yebEqHp_uHxa3j4VmRKRCNG0rRCVKTbmtjCFVW5bKUs64XROrlOWEUMa5rduSrokAWAtaElrVjYK6ZnN0NeUOoX_fm5jktt8Hn09KyhjjpBIVZIpOlA59jMFYOQS3U-FTEpBj1XKqWuaq5aFqybLEJilm2L-Z8Bf9j_UNgGODOg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Fox, Catherine M.</creator><creator>Breslin, Carmel B.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0586-5375</orcidid></search><sort><creationdate>2020</creationdate><title>Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH</title><author>Fox, Catherine M. ; Breslin, Carmel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-98dd99695c24f6ee16d55af2434fb1faaf4112344f7d52b1900b92512678a0773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calibration</topic><topic>Chemical reduction</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Circuits</topic><topic>Diffusion coefficient</topic><topic>Electrical measurement</topic><topic>Electrochemistry</topic><topic>Glassy carbon</topic><topic>Gold</topic><topic>Hydrogels</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Nanoparticles</topic><topic>Nitrates</topic><topic>Physical Chemistry</topic><topic>Reaction kinetics</topic><topic>Research Article</topic><topic>Rotating disks</topic><topic>Rotation</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>Silver</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fox, Catherine M.</creatorcontrib><creatorcontrib>Breslin, Carmel B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fox, Catherine M.</au><au>Breslin, Carmel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2020</date><risdate>2020</risdate><volume>50</volume><issue>1</issue><spage>125</spage><epage>138</epage><pages>125-138</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>A glassy carbon electrode modified with silver nanoparticles was employed as a nitrate sensor to give a calibration curve with a sensitivity of 2.6 μA μM −1  cm −2 and a LOD of 4.1 μM NO 3 − at a neutral pH. The calibration curve was generated using rotating disc voltammetry coupled with constant potential amperometry, giving efficient diffusion of the nitrate to the surface. Reasonably good selectivity for nitrate was observed in the presence of nitrite, chloride and phosphate anions. The nitrate diffusion coefficient was estimated as 1.41 × 10 −5 to 1.73 × 10 −5  cm 2  s −1 using a combination of cyclic voltammetry and rotating disc voltammetry, while the rate constant for the nitrate reduction reaction was estimated as 0.11 cm s −1 . Some deviations from the Randles–Sevick and Levich equations were seen at higher scan rates, consistent with the slow kinetics and nitrate adsorption. While stable silver nanoparticles were electrochemically formed in the solution phase and incorporated within a hydrogel matrix, the best approach in forming the nitrate sensor was the direct electrodeposition of silver nanoparticles at glassy carbon at − 0.50 V versus Ag|Ag + following a 60-min seeding period at the open-circuit potential. Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-019-01374-3</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0586-5375</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-891X
ispartof Journal of applied electrochemistry, 2020, Vol.50 (1), p.125-138
issn 0021-891X
1572-8838
language eng
recordid cdi_proquest_journals_2333416960
source SpringerLink Journals
subjects Calibration
Chemical reduction
Chemistry
Chemistry and Materials Science
Circuits
Diffusion coefficient
Electrical measurement
Electrochemistry
Glassy carbon
Gold
Hydrogels
Industrial Chemistry/Chemical Engineering
Nanoparticles
Nitrates
Physical Chemistry
Reaction kinetics
Research Article
Rotating disks
Rotation
Selectivity
Sensors
Silver
Voltammetry
title Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20formation%20of%20silver%20nanoparticles%20and%20their%20applications%20in%20the%20reduction%20and%20detection%20of%20nitrates%20at%20neutral%20pH&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=Fox,%20Catherine%20M.&rft.date=2020&rft.volume=50&rft.issue=1&rft.spage=125&rft.epage=138&rft.pages=125-138&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-019-01374-3&rft_dat=%3Cproquest_cross%3E2333416960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333416960&rft_id=info:pmid/&rfr_iscdi=true