Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH
A glassy carbon electrode modified with silver nanoparticles was employed as a nitrate sensor to give a calibration curve with a sensitivity of 2.6 μA μM −1 cm −2 and a LOD of 4.1 μM NO 3 − at a neutral pH. The calibration curve was generated using rotating disc voltammetry coupled with constant po...
Gespeichert in:
Veröffentlicht in: | Journal of applied electrochemistry 2020, Vol.50 (1), p.125-138 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | 1 |
container_start_page | 125 |
container_title | Journal of applied electrochemistry |
container_volume | 50 |
creator | Fox, Catherine M. Breslin, Carmel B. |
description | A glassy carbon electrode modified with silver nanoparticles was employed as a nitrate sensor to give a calibration curve with a sensitivity of 2.6 μA μM
−1
cm
−2
and a LOD of 4.1 μM NO
3
−
at a neutral pH. The calibration curve was generated using rotating disc voltammetry coupled with constant potential amperometry, giving efficient diffusion of the nitrate to the surface. Reasonably good selectivity for nitrate was observed in the presence of nitrite, chloride and phosphate anions. The nitrate diffusion coefficient was estimated as 1.41 × 10
−5
to 1.73 × 10
−5
cm
2
s
−1
using a combination of cyclic voltammetry and rotating disc voltammetry, while the rate constant for the nitrate reduction reaction was estimated as 0.11 cm s
−1
. Some deviations from the Randles–Sevick and Levich equations were seen at higher scan rates, consistent with the slow kinetics and nitrate adsorption. While stable silver nanoparticles were electrochemically formed in the solution phase and incorporated within a hydrogel matrix, the best approach in forming the nitrate sensor was the direct electrodeposition of silver nanoparticles at glassy carbon at − 0.50 V versus Ag|Ag
+
following a 60-min seeding period at the open-circuit potential.
Graphic abstract |
doi_str_mv | 10.1007/s10800-019-01374-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2333416960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333416960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-98dd99695c24f6ee16d55af2434fb1faaf4112344f7d52b1900b92512678a0773</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXA9ejLx3xkKaVaQXCj4C6kmcSmTDNjkgou_edmOoo7F4_wwjn3wUXoksA1AahvIoEGoAAi8rCaF-wIzUhZ06JpWHOMZgCUFI0gr6foLMYtAAha8Rn6WnZGp9Drjdk5rTps-7BTyfUe9xZH132YgL3y_aBCcrozESvf4rQxLmA1DF2WRjpi58dfHEy71wd_5FqTjP5N8y4FlcaEhL3Z56XDw-ocnVjVRXPx887Ry93yebEqHp_uHxa3j4VmRKRCNG0rRCVKTbmtjCFVW5bKUs64XROrlOWEUMa5rduSrokAWAtaElrVjYK6ZnN0NeUOoX_fm5jktt8Hn09KyhjjpBIVZIpOlA59jMFYOQS3U-FTEpBj1XKqWuaq5aFqybLEJilm2L-Z8Bf9j_UNgGODOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333416960</pqid></control><display><type>article</type><title>Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH</title><source>SpringerLink Journals</source><creator>Fox, Catherine M. ; Breslin, Carmel B.</creator><creatorcontrib>Fox, Catherine M. ; Breslin, Carmel B.</creatorcontrib><description>A glassy carbon electrode modified with silver nanoparticles was employed as a nitrate sensor to give a calibration curve with a sensitivity of 2.6 μA μM
−1
cm
−2
and a LOD of 4.1 μM NO
3
−
at a neutral pH. The calibration curve was generated using rotating disc voltammetry coupled with constant potential amperometry, giving efficient diffusion of the nitrate to the surface. Reasonably good selectivity for nitrate was observed in the presence of nitrite, chloride and phosphate anions. The nitrate diffusion coefficient was estimated as 1.41 × 10
−5
to 1.73 × 10
−5
cm
2
s
−1
using a combination of cyclic voltammetry and rotating disc voltammetry, while the rate constant for the nitrate reduction reaction was estimated as 0.11 cm s
−1
. Some deviations from the Randles–Sevick and Levich equations were seen at higher scan rates, consistent with the slow kinetics and nitrate adsorption. While stable silver nanoparticles were electrochemically formed in the solution phase and incorporated within a hydrogel matrix, the best approach in forming the nitrate sensor was the direct electrodeposition of silver nanoparticles at glassy carbon at − 0.50 V versus Ag|Ag
+
following a 60-min seeding period at the open-circuit potential.
Graphic abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-019-01374-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Calibration ; Chemical reduction ; Chemistry ; Chemistry and Materials Science ; Circuits ; Diffusion coefficient ; Electrical measurement ; Electrochemistry ; Glassy carbon ; Gold ; Hydrogels ; Industrial Chemistry/Chemical Engineering ; Nanoparticles ; Nitrates ; Physical Chemistry ; Reaction kinetics ; Research Article ; Rotating disks ; Rotation ; Selectivity ; Sensors ; Silver ; Voltammetry</subject><ispartof>Journal of applied electrochemistry, 2020, Vol.50 (1), p.125-138</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-98dd99695c24f6ee16d55af2434fb1faaf4112344f7d52b1900b92512678a0773</citedby><cites>FETCH-LOGICAL-c319t-98dd99695c24f6ee16d55af2434fb1faaf4112344f7d52b1900b92512678a0773</cites><orcidid>0000-0002-0586-5375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-019-01374-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-019-01374-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fox, Catherine M.</creatorcontrib><creatorcontrib>Breslin, Carmel B.</creatorcontrib><title>Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>A glassy carbon electrode modified with silver nanoparticles was employed as a nitrate sensor to give a calibration curve with a sensitivity of 2.6 μA μM
−1
cm
−2
and a LOD of 4.1 μM NO
3
−
at a neutral pH. The calibration curve was generated using rotating disc voltammetry coupled with constant potential amperometry, giving efficient diffusion of the nitrate to the surface. Reasonably good selectivity for nitrate was observed in the presence of nitrite, chloride and phosphate anions. The nitrate diffusion coefficient was estimated as 1.41 × 10
−5
to 1.73 × 10
−5
cm
2
s
−1
using a combination of cyclic voltammetry and rotating disc voltammetry, while the rate constant for the nitrate reduction reaction was estimated as 0.11 cm s
−1
. Some deviations from the Randles–Sevick and Levich equations were seen at higher scan rates, consistent with the slow kinetics and nitrate adsorption. While stable silver nanoparticles were electrochemically formed in the solution phase and incorporated within a hydrogel matrix, the best approach in forming the nitrate sensor was the direct electrodeposition of silver nanoparticles at glassy carbon at − 0.50 V versus Ag|Ag
+
following a 60-min seeding period at the open-circuit potential.
Graphic abstract</description><subject>Calibration</subject><subject>Chemical reduction</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Circuits</subject><subject>Diffusion coefficient</subject><subject>Electrical measurement</subject><subject>Electrochemistry</subject><subject>Glassy carbon</subject><subject>Gold</subject><subject>Hydrogels</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Nanoparticles</subject><subject>Nitrates</subject><subject>Physical Chemistry</subject><subject>Reaction kinetics</subject><subject>Research Article</subject><subject>Rotating disks</subject><subject>Rotation</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>Silver</subject><subject>Voltammetry</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wFXA9ejLx3xkKaVaQXCj4C6kmcSmTDNjkgou_edmOoo7F4_wwjn3wUXoksA1AahvIoEGoAAi8rCaF-wIzUhZ06JpWHOMZgCUFI0gr6foLMYtAAha8Rn6WnZGp9Drjdk5rTps-7BTyfUe9xZH132YgL3y_aBCcrozESvf4rQxLmA1DF2WRjpi58dfHEy71wd_5FqTjP5N8y4FlcaEhL3Z56XDw-ocnVjVRXPx887Ry93yebEqHp_uHxa3j4VmRKRCNG0rRCVKTbmtjCFVW5bKUs64XROrlOWEUMa5rduSrokAWAtaElrVjYK6ZnN0NeUOoX_fm5jktt8Hn09KyhjjpBIVZIpOlA59jMFYOQS3U-FTEpBj1XKqWuaq5aFqybLEJilm2L-Z8Bf9j_UNgGODOg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Fox, Catherine M.</creator><creator>Breslin, Carmel B.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0586-5375</orcidid></search><sort><creationdate>2020</creationdate><title>Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH</title><author>Fox, Catherine M. ; Breslin, Carmel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-98dd99695c24f6ee16d55af2434fb1faaf4112344f7d52b1900b92512678a0773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calibration</topic><topic>Chemical reduction</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Circuits</topic><topic>Diffusion coefficient</topic><topic>Electrical measurement</topic><topic>Electrochemistry</topic><topic>Glassy carbon</topic><topic>Gold</topic><topic>Hydrogels</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Nanoparticles</topic><topic>Nitrates</topic><topic>Physical Chemistry</topic><topic>Reaction kinetics</topic><topic>Research Article</topic><topic>Rotating disks</topic><topic>Rotation</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>Silver</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fox, Catherine M.</creatorcontrib><creatorcontrib>Breslin, Carmel B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fox, Catherine M.</au><au>Breslin, Carmel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2020</date><risdate>2020</risdate><volume>50</volume><issue>1</issue><spage>125</spage><epage>138</epage><pages>125-138</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>A glassy carbon electrode modified with silver nanoparticles was employed as a nitrate sensor to give a calibration curve with a sensitivity of 2.6 μA μM
−1
cm
−2
and a LOD of 4.1 μM NO
3
−
at a neutral pH. The calibration curve was generated using rotating disc voltammetry coupled with constant potential amperometry, giving efficient diffusion of the nitrate to the surface. Reasonably good selectivity for nitrate was observed in the presence of nitrite, chloride and phosphate anions. The nitrate diffusion coefficient was estimated as 1.41 × 10
−5
to 1.73 × 10
−5
cm
2
s
−1
using a combination of cyclic voltammetry and rotating disc voltammetry, while the rate constant for the nitrate reduction reaction was estimated as 0.11 cm s
−1
. Some deviations from the Randles–Sevick and Levich equations were seen at higher scan rates, consistent with the slow kinetics and nitrate adsorption. While stable silver nanoparticles were electrochemically formed in the solution phase and incorporated within a hydrogel matrix, the best approach in forming the nitrate sensor was the direct electrodeposition of silver nanoparticles at glassy carbon at − 0.50 V versus Ag|Ag
+
following a 60-min seeding period at the open-circuit potential.
Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-019-01374-3</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0586-5375</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-891X |
ispartof | Journal of applied electrochemistry, 2020, Vol.50 (1), p.125-138 |
issn | 0021-891X 1572-8838 |
language | eng |
recordid | cdi_proquest_journals_2333416960 |
source | SpringerLink Journals |
subjects | Calibration Chemical reduction Chemistry Chemistry and Materials Science Circuits Diffusion coefficient Electrical measurement Electrochemistry Glassy carbon Gold Hydrogels Industrial Chemistry/Chemical Engineering Nanoparticles Nitrates Physical Chemistry Reaction kinetics Research Article Rotating disks Rotation Selectivity Sensors Silver Voltammetry |
title | Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20formation%20of%20silver%20nanoparticles%20and%20their%20applications%20in%20the%20reduction%20and%20detection%20of%20nitrates%20at%20neutral%20pH&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=Fox,%20Catherine%20M.&rft.date=2020&rft.volume=50&rft.issue=1&rft.spage=125&rft.epage=138&rft.pages=125-138&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-019-01374-3&rft_dat=%3Cproquest_cross%3E2333416960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333416960&rft_id=info:pmid/&rfr_iscdi=true |