A lower bound on permutation codes of distance n-1

A classical recursive construction for mutually orthogonal latin squares (MOLS) is shown to hold more generally for a class of permutation codes of length n and minimum distance n - 1 . When such codes of length p + 1 are included as ingredients, we obtain a general lower bound M ( n , n - 1 ) ≥ n 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2020, Vol.88 (1), p.63-72
Hauptverfasser: Bereg, Sergey, Dukes, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 63
container_title Designs, codes, and cryptography
container_volume 88
creator Bereg, Sergey
Dukes, Peter J.
description A classical recursive construction for mutually orthogonal latin squares (MOLS) is shown to hold more generally for a class of permutation codes of length n and minimum distance n - 1 . When such codes of length p + 1 are included as ingredients, we obtain a general lower bound M ( n , n - 1 ) ≥ n 1.0797 for large n , gaining a small improvement on the guarantee given from MOLS.
doi_str_mv 10.1007/s10623-019-00670-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2333416886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333416886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1622902188395340f7db528a4a3ca88898bc92a20482302e6593a9bb93e61a0f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJTJMmx0X8ggUveg5pm8ouu82atIj_3mgFb55mDu_zzvAwdinhWgLUN1mCRhIgrQDQNQh1xBZS1SRqZfQxW4BFJSQgnrKznLcAIAlwwXDFd_EjJN7Eaeh4HPghpP00-nFT9jZ2IfPY826TRz-0gQ9CnrOT3u9yuPidS_Z6f_dy-yjWzw9Pt6u1aEnaUUiNaAGlMWQVVdDXXaPQ-MpT640x1jStRY9QGSyvBK0seds0loKWHnpasqu595Di-xTy6LZxSkM56ZCIKqmN0SWFc6pNMecUendIm71Pn06C-3bjZjeuuHE_bpwqEM1QLuHhLaS_6n-oL-UfY3k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333416886</pqid></control><display><type>article</type><title>A lower bound on permutation codes of distance n-1</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bereg, Sergey ; Dukes, Peter J.</creator><creatorcontrib>Bereg, Sergey ; Dukes, Peter J.</creatorcontrib><description>A classical recursive construction for mutually orthogonal latin squares (MOLS) is shown to hold more generally for a class of permutation codes of length n and minimum distance n - 1 . When such codes of length p + 1 are included as ingredients, we obtain a general lower bound M ( n , n - 1 ) ≥ n 1.0797 for large n , gaining a small improvement on the guarantee given from MOLS.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-019-00670-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arrays ; Circuits ; Codes ; Coding and Information Theory ; Computer Science ; Cryptology ; Data Structures and Information Theory ; Discrete Mathematics in Computer Science ; Information and Communication ; Latin square design ; Lower bounds ; Permutations</subject><ispartof>Designs, codes, and cryptography, 2020, Vol.88 (1), p.63-72</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1622902188395340f7db528a4a3ca88898bc92a20482302e6593a9bb93e61a0f3</citedby><cites>FETCH-LOGICAL-c319t-1622902188395340f7db528a4a3ca88898bc92a20482302e6593a9bb93e61a0f3</cites><orcidid>0000-0002-2866-6766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10623-019-00670-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10623-019-00670-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Bereg, Sergey</creatorcontrib><creatorcontrib>Dukes, Peter J.</creatorcontrib><title>A lower bound on permutation codes of distance n-1</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>A classical recursive construction for mutually orthogonal latin squares (MOLS) is shown to hold more generally for a class of permutation codes of length n and minimum distance n - 1 . When such codes of length p + 1 are included as ingredients, we obtain a general lower bound M ( n , n - 1 ) ≥ n 1.0797 for large n , gaining a small improvement on the guarantee given from MOLS.</description><subject>Arrays</subject><subject>Circuits</subject><subject>Codes</subject><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Structures and Information Theory</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Information and Communication</subject><subject>Latin square design</subject><subject>Lower bounds</subject><subject>Permutations</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJTJMmx0X8ggUveg5pm8ouu82atIj_3mgFb55mDu_zzvAwdinhWgLUN1mCRhIgrQDQNQh1xBZS1SRqZfQxW4BFJSQgnrKznLcAIAlwwXDFd_EjJN7Eaeh4HPghpP00-nFT9jZ2IfPY826TRz-0gQ9CnrOT3u9yuPidS_Z6f_dy-yjWzw9Pt6u1aEnaUUiNaAGlMWQVVdDXXaPQ-MpT640x1jStRY9QGSyvBK0seds0loKWHnpasqu595Di-xTy6LZxSkM56ZCIKqmN0SWFc6pNMecUendIm71Pn06C-3bjZjeuuHE_bpwqEM1QLuHhLaS_6n-oL-UfY3k</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Bereg, Sergey</creator><creator>Dukes, Peter J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2866-6766</orcidid></search><sort><creationdate>2020</creationdate><title>A lower bound on permutation codes of distance n-1</title><author>Bereg, Sergey ; Dukes, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1622902188395340f7db528a4a3ca88898bc92a20482302e6593a9bb93e61a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arrays</topic><topic>Circuits</topic><topic>Codes</topic><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Structures and Information Theory</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Information and Communication</topic><topic>Latin square design</topic><topic>Lower bounds</topic><topic>Permutations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bereg, Sergey</creatorcontrib><creatorcontrib>Dukes, Peter J.</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bereg, Sergey</au><au>Dukes, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lower bound on permutation codes of distance n-1</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2020</date><risdate>2020</risdate><volume>88</volume><issue>1</issue><spage>63</spage><epage>72</epage><pages>63-72</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>A classical recursive construction for mutually orthogonal latin squares (MOLS) is shown to hold more generally for a class of permutation codes of length n and minimum distance n - 1 . When such codes of length p + 1 are included as ingredients, we obtain a general lower bound M ( n , n - 1 ) ≥ n 1.0797 for large n , gaining a small improvement on the guarantee given from MOLS.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-019-00670-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2866-6766</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2020, Vol.88 (1), p.63-72
issn 0925-1022
1573-7586
language eng
recordid cdi_proquest_journals_2333416886
source SpringerLink Journals - AutoHoldings
subjects Arrays
Circuits
Codes
Coding and Information Theory
Computer Science
Cryptology
Data Structures and Information Theory
Discrete Mathematics in Computer Science
Information and Communication
Latin square design
Lower bounds
Permutations
title A lower bound on permutation codes of distance n-1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lower%20bound%20on%20permutation%20codes%20of%20distance%20n-1&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Bereg,%20Sergey&rft.date=2020&rft.volume=88&rft.issue=1&rft.spage=63&rft.epage=72&rft.pages=63-72&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-019-00670-5&rft_dat=%3Cproquest_cross%3E2333416886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333416886&rft_id=info:pmid/&rfr_iscdi=true