pH-dependent silicon release from phytoliths of Norway spruce (Picea abies)

Accurate evaluation of the preservation state of fossil phytoliths in glacial lake sediments is important, as these microfossils are often used in paleoecological and archaeological studies. The characteristic phytolith type of the Norway spruce ( Picea abies [L.] Karst.) needle is a potential keyst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of paleolimnology 2020, Vol.63 (1), p.65-81
Hauptverfasser: Lisztes-Szabó, Zsuzsa, Filep, Anna F., Csík, Attila, Pető, Ákos, Kertész, Titanilla G., Braun, Mihály
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue 1
container_start_page 65
container_title Journal of paleolimnology
container_volume 63
creator Lisztes-Szabó, Zsuzsa
Filep, Anna F.
Csík, Attila
Pető, Ákos
Kertész, Titanilla G.
Braun, Mihály
description Accurate evaluation of the preservation state of fossil phytoliths in glacial lake sediments is important, as these microfossils are often used in paleoecological and archaeological studies. The characteristic phytolith type of the Norway spruce ( Picea abies [L.] Karst.) needle is a potential keystone in paleoecological studies. In this laboratory study, we investigated dissolution of Picea abies blocky type phytoliths, to simulate dissolution processes in sediments and soils and create reference material to compare with fossil phytoliths. Intact needles, needle ash, diatomite and silica gel were treated with Britton–Robinson buffer solutions at pH values from 2 to 12 for 22 days. Silicon was measured by microwave plasma atomic emission spectrometry. Treatment effects were evaluated on longitudinal cuts of needles under a stereomicroscope and on phytolith assemblages from needles using a light microscope. Surfaces of treated phytoliths were investigated by scanning electron microscope and elemental analysis of phytoliths was determined by energy dispersive X-ray fluorescence. Dissolution of silicon in spruce needles was inhibited between pH 8.0 and 11.1. Needle tissue protects phytoliths from erosion processes at this alkaline pH range. Most dissolved silicon appeared to originate from the phytolith surfaces and the silica matrix of the apoplast in the tissues, with less from complete dissolution of phytoliths. Our experiment suggests that extraneous metal elements are incorporated into the silica structure during the dissolution process. Thus, higher element content is an effect of partial dissolution rather than a cause of dissolution. Ultrastructure of the surface of Picea -blocky type phytoliths, namely disappearance of the globular structure, may be useful to assess the intensity of destructive processes in sediments. Our experimental treatments indicate that characteristic Picea -blocky phytoliths in needles can be well-preserved, depending on circumstances in sediments. Further micro-analytical measurements will make these needles promising tools for paleoenvironmental reconstructions.
doi_str_mv 10.1007/s10933-019-00103-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2333075782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333075782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-6d344543a887c1c3b7a07897efdfda305ae90d80715d7235a53083115e5083393</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPAix6ik8ymyR6lqBWLetBzSHdn7ZbtZk22SP-9Wyt48_Tg8d4b5mPsXMK1BDA3SUKOKEDmAkACCnXARlKbwcqkOWQjyJUUyih7zE5SWgFAbo0esaduJkrqqC2p7Xmqm7oILY_UkE_EqxjWvFtu-9DU_TLxUPHnEL_8lqcubgril691QZ77RU3p6pQdVb5JdParY_Z-f_c2nYn5y8Pj9HYuCpxgLyYlZpnO0FtrClngwngwNjdUlVXpEbSnHEoLRurSKNReI1iUUpMeFHMcs4v9bhfD54ZS71ZhE9vhpFOICEYbq4aU2qeKGFKKVLku1msft06C20Fze2hugOZ-oLldCfel4b-6_aD4N_1P6xtDm21g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333075782</pqid></control><display><type>article</type><title>pH-dependent silicon release from phytoliths of Norway spruce (Picea abies)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lisztes-Szabó, Zsuzsa ; Filep, Anna F. ; Csík, Attila ; Pető, Ákos ; Kertész, Titanilla G. ; Braun, Mihály</creator><creatorcontrib>Lisztes-Szabó, Zsuzsa ; Filep, Anna F. ; Csík, Attila ; Pető, Ákos ; Kertész, Titanilla G. ; Braun, Mihály</creatorcontrib><description>Accurate evaluation of the preservation state of fossil phytoliths in glacial lake sediments is important, as these microfossils are often used in paleoecological and archaeological studies. The characteristic phytolith type of the Norway spruce ( Picea abies [L.] Karst.) needle is a potential keystone in paleoecological studies. In this laboratory study, we investigated dissolution of Picea abies blocky type phytoliths, to simulate dissolution processes in sediments and soils and create reference material to compare with fossil phytoliths. Intact needles, needle ash, diatomite and silica gel were treated with Britton–Robinson buffer solutions at pH values from 2 to 12 for 22 days. Silicon was measured by microwave plasma atomic emission spectrometry. Treatment effects were evaluated on longitudinal cuts of needles under a stereomicroscope and on phytolith assemblages from needles using a light microscope. Surfaces of treated phytoliths were investigated by scanning electron microscope and elemental analysis of phytoliths was determined by energy dispersive X-ray fluorescence. Dissolution of silicon in spruce needles was inhibited between pH 8.0 and 11.1. Needle tissue protects phytoliths from erosion processes at this alkaline pH range. Most dissolved silicon appeared to originate from the phytolith surfaces and the silica matrix of the apoplast in the tissues, with less from complete dissolution of phytoliths. Our experiment suggests that extraneous metal elements are incorporated into the silica structure during the dissolution process. Thus, higher element content is an effect of partial dissolution rather than a cause of dissolution. Ultrastructure of the surface of Picea -blocky type phytoliths, namely disappearance of the globular structure, may be useful to assess the intensity of destructive processes in sediments. Our experimental treatments indicate that characteristic Picea -blocky phytoliths in needles can be well-preserved, depending on circumstances in sediments. Further micro-analytical measurements will make these needles promising tools for paleoenvironmental reconstructions.</description><identifier>ISSN: 0921-2728</identifier><identifier>EISSN: 1573-0417</identifier><identifier>DOI: 10.1007/s10933-019-00103-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Apoplast ; Archaeology ; Buffer solutions ; Climate Change ; Destructive testing ; Diatomaceous earth ; Diatomites ; Dissolution ; Dissolving ; Earth and Environmental Science ; Earth Sciences ; Emission analysis ; Emission measurements ; Erosion ; Evaluation ; Fluorescence ; Fossils ; Freshwater &amp; Marine Ecology ; Gels ; Geology ; Glacial lakes ; Karst ; Lake deposits ; Lake sediments ; Metals ; Microorganisms ; Microscopes ; Microwave plasmas ; Original Paper ; Palaeoecology ; Paleoecology ; Paleontology ; pH effects ; Physical Geography ; Picea abies ; Pine needles ; Pine trees ; Preservation ; Scanning electron microscopy ; Sediment ; Sedimentology ; Sediments ; Silica ; Silica gel ; Silicon ; Silicon dioxide ; Soil ; Spectrometry ; Tissue ; Trees ; Ultrastructure ; Water analysis ; X ray fluorescence analysis ; X-ray fluorescence</subject><ispartof>Journal of paleolimnology, 2020, Vol.63 (1), p.65-81</ispartof><rights>The Author(s) 2019</rights><rights>Journal of Paleolimnology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-6d344543a887c1c3b7a07897efdfda305ae90d80715d7235a53083115e5083393</citedby><cites>FETCH-LOGICAL-c363t-6d344543a887c1c3b7a07897efdfda305ae90d80715d7235a53083115e5083393</cites><orcidid>0000-0002-6322-8542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10933-019-00103-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10933-019-00103-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Lisztes-Szabó, Zsuzsa</creatorcontrib><creatorcontrib>Filep, Anna F.</creatorcontrib><creatorcontrib>Csík, Attila</creatorcontrib><creatorcontrib>Pető, Ákos</creatorcontrib><creatorcontrib>Kertész, Titanilla G.</creatorcontrib><creatorcontrib>Braun, Mihály</creatorcontrib><title>pH-dependent silicon release from phytoliths of Norway spruce (Picea abies)</title><title>Journal of paleolimnology</title><addtitle>J Paleolimnol</addtitle><description>Accurate evaluation of the preservation state of fossil phytoliths in glacial lake sediments is important, as these microfossils are often used in paleoecological and archaeological studies. The characteristic phytolith type of the Norway spruce ( Picea abies [L.] Karst.) needle is a potential keystone in paleoecological studies. In this laboratory study, we investigated dissolution of Picea abies blocky type phytoliths, to simulate dissolution processes in sediments and soils and create reference material to compare with fossil phytoliths. Intact needles, needle ash, diatomite and silica gel were treated with Britton–Robinson buffer solutions at pH values from 2 to 12 for 22 days. Silicon was measured by microwave plasma atomic emission spectrometry. Treatment effects were evaluated on longitudinal cuts of needles under a stereomicroscope and on phytolith assemblages from needles using a light microscope. Surfaces of treated phytoliths were investigated by scanning electron microscope and elemental analysis of phytoliths was determined by energy dispersive X-ray fluorescence. Dissolution of silicon in spruce needles was inhibited between pH 8.0 and 11.1. Needle tissue protects phytoliths from erosion processes at this alkaline pH range. Most dissolved silicon appeared to originate from the phytolith surfaces and the silica matrix of the apoplast in the tissues, with less from complete dissolution of phytoliths. Our experiment suggests that extraneous metal elements are incorporated into the silica structure during the dissolution process. Thus, higher element content is an effect of partial dissolution rather than a cause of dissolution. Ultrastructure of the surface of Picea -blocky type phytoliths, namely disappearance of the globular structure, may be useful to assess the intensity of destructive processes in sediments. Our experimental treatments indicate that characteristic Picea -blocky phytoliths in needles can be well-preserved, depending on circumstances in sediments. Further micro-analytical measurements will make these needles promising tools for paleoenvironmental reconstructions.</description><subject>Apoplast</subject><subject>Archaeology</subject><subject>Buffer solutions</subject><subject>Climate Change</subject><subject>Destructive testing</subject><subject>Diatomaceous earth</subject><subject>Diatomites</subject><subject>Dissolution</subject><subject>Dissolving</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Emission analysis</subject><subject>Emission measurements</subject><subject>Erosion</subject><subject>Evaluation</subject><subject>Fluorescence</subject><subject>Fossils</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Gels</subject><subject>Geology</subject><subject>Glacial lakes</subject><subject>Karst</subject><subject>Lake deposits</subject><subject>Lake sediments</subject><subject>Metals</subject><subject>Microorganisms</subject><subject>Microscopes</subject><subject>Microwave plasmas</subject><subject>Original Paper</subject><subject>Palaeoecology</subject><subject>Paleoecology</subject><subject>Paleontology</subject><subject>pH effects</subject><subject>Physical Geography</subject><subject>Picea abies</subject><subject>Pine needles</subject><subject>Pine trees</subject><subject>Preservation</subject><subject>Scanning electron microscopy</subject><subject>Sediment</subject><subject>Sedimentology</subject><subject>Sediments</subject><subject>Silica</subject><subject>Silica gel</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Soil</subject><subject>Spectrometry</subject><subject>Tissue</subject><subject>Trees</subject><subject>Ultrastructure</subject><subject>Water analysis</subject><subject>X ray fluorescence analysis</subject><subject>X-ray fluorescence</subject><issn>0921-2728</issn><issn>1573-0417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_wFPAix6ik8ymyR6lqBWLetBzSHdn7ZbtZk22SP-9Wyt48_Tg8d4b5mPsXMK1BDA3SUKOKEDmAkACCnXARlKbwcqkOWQjyJUUyih7zE5SWgFAbo0esaduJkrqqC2p7Xmqm7oILY_UkE_EqxjWvFtu-9DU_TLxUPHnEL_8lqcubgril691QZ77RU3p6pQdVb5JdParY_Z-f_c2nYn5y8Pj9HYuCpxgLyYlZpnO0FtrClngwngwNjdUlVXpEbSnHEoLRurSKNReI1iUUpMeFHMcs4v9bhfD54ZS71ZhE9vhpFOICEYbq4aU2qeKGFKKVLku1msft06C20Fze2hugOZ-oLldCfel4b-6_aD4N_1P6xtDm21g</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lisztes-Szabó, Zsuzsa</creator><creator>Filep, Anna F.</creator><creator>Csík, Attila</creator><creator>Pető, Ákos</creator><creator>Kertész, Titanilla G.</creator><creator>Braun, Mihály</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-6322-8542</orcidid></search><sort><creationdate>2020</creationdate><title>pH-dependent silicon release from phytoliths of Norway spruce (Picea abies)</title><author>Lisztes-Szabó, Zsuzsa ; Filep, Anna F. ; Csík, Attila ; Pető, Ákos ; Kertész, Titanilla G. ; Braun, Mihály</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-6d344543a887c1c3b7a07897efdfda305ae90d80715d7235a53083115e5083393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apoplast</topic><topic>Archaeology</topic><topic>Buffer solutions</topic><topic>Climate Change</topic><topic>Destructive testing</topic><topic>Diatomaceous earth</topic><topic>Diatomites</topic><topic>Dissolution</topic><topic>Dissolving</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Emission analysis</topic><topic>Emission measurements</topic><topic>Erosion</topic><topic>Evaluation</topic><topic>Fluorescence</topic><topic>Fossils</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Gels</topic><topic>Geology</topic><topic>Glacial lakes</topic><topic>Karst</topic><topic>Lake deposits</topic><topic>Lake sediments</topic><topic>Metals</topic><topic>Microorganisms</topic><topic>Microscopes</topic><topic>Microwave plasmas</topic><topic>Original Paper</topic><topic>Palaeoecology</topic><topic>Paleoecology</topic><topic>Paleontology</topic><topic>pH effects</topic><topic>Physical Geography</topic><topic>Picea abies</topic><topic>Pine needles</topic><topic>Pine trees</topic><topic>Preservation</topic><topic>Scanning electron microscopy</topic><topic>Sediment</topic><topic>Sedimentology</topic><topic>Sediments</topic><topic>Silica</topic><topic>Silica gel</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Soil</topic><topic>Spectrometry</topic><topic>Tissue</topic><topic>Trees</topic><topic>Ultrastructure</topic><topic>Water analysis</topic><topic>X ray fluorescence analysis</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lisztes-Szabó, Zsuzsa</creatorcontrib><creatorcontrib>Filep, Anna F.</creatorcontrib><creatorcontrib>Csík, Attila</creatorcontrib><creatorcontrib>Pető, Ákos</creatorcontrib><creatorcontrib>Kertész, Titanilla G.</creatorcontrib><creatorcontrib>Braun, Mihály</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of paleolimnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lisztes-Szabó, Zsuzsa</au><au>Filep, Anna F.</au><au>Csík, Attila</au><au>Pető, Ákos</au><au>Kertész, Titanilla G.</au><au>Braun, Mihály</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pH-dependent silicon release from phytoliths of Norway spruce (Picea abies)</atitle><jtitle>Journal of paleolimnology</jtitle><stitle>J Paleolimnol</stitle><date>2020</date><risdate>2020</risdate><volume>63</volume><issue>1</issue><spage>65</spage><epage>81</epage><pages>65-81</pages><issn>0921-2728</issn><eissn>1573-0417</eissn><abstract>Accurate evaluation of the preservation state of fossil phytoliths in glacial lake sediments is important, as these microfossils are often used in paleoecological and archaeological studies. The characteristic phytolith type of the Norway spruce ( Picea abies [L.] Karst.) needle is a potential keystone in paleoecological studies. In this laboratory study, we investigated dissolution of Picea abies blocky type phytoliths, to simulate dissolution processes in sediments and soils and create reference material to compare with fossil phytoliths. Intact needles, needle ash, diatomite and silica gel were treated with Britton–Robinson buffer solutions at pH values from 2 to 12 for 22 days. Silicon was measured by microwave plasma atomic emission spectrometry. Treatment effects were evaluated on longitudinal cuts of needles under a stereomicroscope and on phytolith assemblages from needles using a light microscope. Surfaces of treated phytoliths were investigated by scanning electron microscope and elemental analysis of phytoliths was determined by energy dispersive X-ray fluorescence. Dissolution of silicon in spruce needles was inhibited between pH 8.0 and 11.1. Needle tissue protects phytoliths from erosion processes at this alkaline pH range. Most dissolved silicon appeared to originate from the phytolith surfaces and the silica matrix of the apoplast in the tissues, with less from complete dissolution of phytoliths. Our experiment suggests that extraneous metal elements are incorporated into the silica structure during the dissolution process. Thus, higher element content is an effect of partial dissolution rather than a cause of dissolution. Ultrastructure of the surface of Picea -blocky type phytoliths, namely disappearance of the globular structure, may be useful to assess the intensity of destructive processes in sediments. Our experimental treatments indicate that characteristic Picea -blocky phytoliths in needles can be well-preserved, depending on circumstances in sediments. Further micro-analytical measurements will make these needles promising tools for paleoenvironmental reconstructions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10933-019-00103-2</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6322-8542</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-2728
ispartof Journal of paleolimnology, 2020, Vol.63 (1), p.65-81
issn 0921-2728
1573-0417
language eng
recordid cdi_proquest_journals_2333075782
source SpringerLink Journals - AutoHoldings
subjects Apoplast
Archaeology
Buffer solutions
Climate Change
Destructive testing
Diatomaceous earth
Diatomites
Dissolution
Dissolving
Earth and Environmental Science
Earth Sciences
Emission analysis
Emission measurements
Erosion
Evaluation
Fluorescence
Fossils
Freshwater & Marine Ecology
Gels
Geology
Glacial lakes
Karst
Lake deposits
Lake sediments
Metals
Microorganisms
Microscopes
Microwave plasmas
Original Paper
Palaeoecology
Paleoecology
Paleontology
pH effects
Physical Geography
Picea abies
Pine needles
Pine trees
Preservation
Scanning electron microscopy
Sediment
Sedimentology
Sediments
Silica
Silica gel
Silicon
Silicon dioxide
Soil
Spectrometry
Tissue
Trees
Ultrastructure
Water analysis
X ray fluorescence analysis
X-ray fluorescence
title pH-dependent silicon release from phytoliths of Norway spruce (Picea abies)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pH-dependent%20silicon%20release%20from%20phytoliths%20of%20Norway%20spruce%20(Picea%20abies)&rft.jtitle=Journal%20of%20paleolimnology&rft.au=Lisztes-Szab%C3%B3,%20Zsuzsa&rft.date=2020&rft.volume=63&rft.issue=1&rft.spage=65&rft.epage=81&rft.pages=65-81&rft.issn=0921-2728&rft.eissn=1573-0417&rft_id=info:doi/10.1007/s10933-019-00103-2&rft_dat=%3Cproquest_cross%3E2333075782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333075782&rft_id=info:pmid/&rfr_iscdi=true