The Rigid Orthogonal Procrustes Rotation Problem
The problem of rotating a matrix orthogonally to a best least squares fit with another matrix of the same order has a closed-form solution based on a singular value decomposition. The optimal rotation matrix is not necessarily rigid, but may also involve a reflection. In some applications, only rigi...
Gespeichert in:
Veröffentlicht in: | Psychometrika 2006-03, Vol.71 (1), p.201-205 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | 1 |
container_start_page | 201 |
container_title | Psychometrika |
container_volume | 71 |
creator | ten Berge, Jos M. F |
description | The problem of rotating a matrix orthogonally to a best least squares fit with another matrix of the same order has a closed-form solution based on a singular value decomposition. The optimal rotation matrix is not necessarily rigid, but may also involve a reflection. In some applications, only rigid rotations are permitted. Gower (1976) has proposed a method for suppressing reflections in cases where that is necessary. This paper proves that Gower's solution does indeed give the best least squares fit over rigid rotation when the unconstrained solution is not rigid. Also, special cases that have multiple solutions are discussed. |
doi_str_mv | 10.1007/s11336-004-1160-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_233254606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ922150</ericid><sourcerecordid>1103661531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-155ace896fe35707bc705b88b07401c02f8bbb3f59f546b3e76998d3b2677fda3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKs_QPCwCB5XJ5nmY49S6heFSqnnkKRJu2Xb1GR78N-7ZYueZph53mF4CLml8EgB5FOmFFGUAKOSUgElPyMDqroGKgXnZACAWCJleEmuct4AQEWVGhBYrH0xr1f1spildh1XcWea4jNFlw659bmYx9a0ddwdZ7bx22tyEUyT_c2pDsnXy2Qxfiuns9f38fO0dMiwLSnnxnlVieCRS5DWSeBWKQtyBNQBC8pai4FXgY-ERS9FVaklWiakDEuDQ3Lf392n-H3wudWbeEjdc1kzRNaFQHQQ7SGXYs7JB71P9dakH01BH73o3ovuvOijF827zMPpsMnONCGZnavzf1BKQQFpx931nE-1-1tPPirGKAf8BX0zaf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233254606</pqid></control><display><type>article</type><title>The Rigid Orthogonal Procrustes Rotation Problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>ten Berge, Jos M. F</creator><creatorcontrib>ten Berge, Jos M. F</creatorcontrib><description>The problem of rotating a matrix orthogonally to a best least squares fit with another matrix of the same order has a closed-form solution based on a singular value decomposition. The optimal rotation matrix is not necessarily rigid, but may also involve a reflection. In some applications, only rigid rotations are permitted. Gower (1976) has proposed a method for suppressing reflections in cases where that is necessary. This paper proves that Gower's solution does indeed give the best least squares fit over rigid rotation when the unconstrained solution is not rigid. Also, special cases that have multiple solutions are discussed.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-004-1160-5</identifier><identifier>CODEN: PSMTA2</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Biological and medical sciences ; Computation ; Decomposition ; Eigenvalues ; Eigenvectors ; Equations (Mathematics) ; Factor Analysis ; Fundamental and applied biological sciences. Psychology ; Least Squares Statistics ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics ; Psychometrics. Statistics. Methodology ; Statistical Analysis ; Statistics. Mathematics ; Symmetry</subject><ispartof>Psychometrika, 2006-03, Vol.71 (1), p.201-205</ispartof><rights>2007 INIST-CNRS</rights><rights>The Psychometric Society 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-155ace896fe35707bc705b88b07401c02f8bbb3f59f546b3e76998d3b2677fda3</citedby><cites>FETCH-LOGICAL-c323t-155ace896fe35707bc705b88b07401c02f8bbb3f59f546b3e76998d3b2677fda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ922150$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17761031$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ten Berge, Jos M. F</creatorcontrib><title>The Rigid Orthogonal Procrustes Rotation Problem</title><title>Psychometrika</title><description>The problem of rotating a matrix orthogonally to a best least squares fit with another matrix of the same order has a closed-form solution based on a singular value decomposition. The optimal rotation matrix is not necessarily rigid, but may also involve a reflection. In some applications, only rigid rotations are permitted. Gower (1976) has proposed a method for suppressing reflections in cases where that is necessary. This paper proves that Gower's solution does indeed give the best least squares fit over rigid rotation when the unconstrained solution is not rigid. Also, special cases that have multiple solutions are discussed.</description><subject>Biological and medical sciences</subject><subject>Computation</subject><subject>Decomposition</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Equations (Mathematics)</subject><subject>Factor Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Least Squares Statistics</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Statistical Analysis</subject><subject>Statistics. Mathematics</subject><subject>Symmetry</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkE1LAzEQhoMoWKs_QPCwCB5XJ5nmY49S6heFSqnnkKRJu2Xb1GR78N-7ZYueZph53mF4CLml8EgB5FOmFFGUAKOSUgElPyMDqroGKgXnZACAWCJleEmuct4AQEWVGhBYrH0xr1f1spildh1XcWea4jNFlw659bmYx9a0ddwdZ7bx22tyEUyT_c2pDsnXy2Qxfiuns9f38fO0dMiwLSnnxnlVieCRS5DWSeBWKQtyBNQBC8pai4FXgY-ERS9FVaklWiakDEuDQ3Lf392n-H3wudWbeEjdc1kzRNaFQHQQ7SGXYs7JB71P9dakH01BH73o3ovuvOijF827zMPpsMnONCGZnavzf1BKQQFpx931nE-1-1tPPirGKAf8BX0zaf0</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>ten Berge, Jos M. F</creator><general>Springer</general><general>Springer Nature B.V</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TK</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20060301</creationdate><title>The Rigid Orthogonal Procrustes Rotation Problem</title><author>ten Berge, Jos M. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-155ace896fe35707bc705b88b07401c02f8bbb3f59f546b3e76998d3b2677fda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biological and medical sciences</topic><topic>Computation</topic><topic>Decomposition</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Equations (Mathematics)</topic><topic>Factor Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Least Squares Statistics</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Statistical Analysis</topic><topic>Statistics. Mathematics</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ten Berge, Jos M. F</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Education Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ten Berge, Jos M. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ922150</ericid><atitle>The Rigid Orthogonal Procrustes Rotation Problem</atitle><jtitle>Psychometrika</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>71</volume><issue>1</issue><spage>201</spage><epage>205</epage><pages>201-205</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><coden>PSMTA2</coden><abstract>The problem of rotating a matrix orthogonally to a best least squares fit with another matrix of the same order has a closed-form solution based on a singular value decomposition. The optimal rotation matrix is not necessarily rigid, but may also involve a reflection. In some applications, only rigid rotations are permitted. Gower (1976) has proposed a method for suppressing reflections in cases where that is necessary. This paper proves that Gower's solution does indeed give the best least squares fit over rigid rotation when the unconstrained solution is not rigid. Also, special cases that have multiple solutions are discussed.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s11336-004-1160-5</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-3123 |
ispartof | Psychometrika, 2006-03, Vol.71 (1), p.201-205 |
issn | 0033-3123 1860-0980 |
language | eng |
recordid | cdi_proquest_journals_233254606 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biological and medical sciences Computation Decomposition Eigenvalues Eigenvectors Equations (Mathematics) Factor Analysis Fundamental and applied biological sciences. Psychology Least Squares Statistics Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Psychometrics Psychometrics. Statistics. Methodology Statistical Analysis Statistics. Mathematics Symmetry |
title | The Rigid Orthogonal Procrustes Rotation Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T03%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Rigid%20Orthogonal%20Procrustes%20Rotation%20Problem&rft.jtitle=Psychometrika&rft.au=ten%20Berge,%20Jos%20M.%20F&rft.date=2006-03-01&rft.volume=71&rft.issue=1&rft.spage=201&rft.epage=205&rft.pages=201-205&rft.issn=0033-3123&rft.eissn=1860-0980&rft.coden=PSMTA2&rft_id=info:doi/10.1007/s11336-004-1160-5&rft_dat=%3Cproquest_cross%3E1103661531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=233254606&rft_id=info:pmid/&rft_ericid=EJ922150&rfr_iscdi=true |