The Rigid Orthogonal Procrustes Rotation Problem

The problem of rotating a matrix orthogonally to a best least squares fit with another matrix of the same order has a closed-form solution based on a singular value decomposition. The optimal rotation matrix is not necessarily rigid, but may also involve a reflection. In some applications, only rigi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychometrika 2006-03, Vol.71 (1), p.201-205
1. Verfasser: ten Berge, Jos M. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue 1
container_start_page 201
container_title Psychometrika
container_volume 71
creator ten Berge, Jos M. F
description The problem of rotating a matrix orthogonally to a best least squares fit with another matrix of the same order has a closed-form solution based on a singular value decomposition. The optimal rotation matrix is not necessarily rigid, but may also involve a reflection. In some applications, only rigid rotations are permitted. Gower (1976) has proposed a method for suppressing reflections in cases where that is necessary. This paper proves that Gower's solution does indeed give the best least squares fit over rigid rotation when the unconstrained solution is not rigid. Also, special cases that have multiple solutions are discussed.
doi_str_mv 10.1007/s11336-004-1160-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_233254606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ922150</ericid><sourcerecordid>1103661531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-155ace896fe35707bc705b88b07401c02f8bbb3f59f546b3e76998d3b2677fda3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKs_QPCwCB5XJ5nmY49S6heFSqnnkKRJu2Xb1GR78N-7ZYueZph53mF4CLml8EgB5FOmFFGUAKOSUgElPyMDqroGKgXnZACAWCJleEmuct4AQEWVGhBYrH0xr1f1spildh1XcWea4jNFlw659bmYx9a0ddwdZ7bx22tyEUyT_c2pDsnXy2Qxfiuns9f38fO0dMiwLSnnxnlVieCRS5DWSeBWKQtyBNQBC8pai4FXgY-ERS9FVaklWiakDEuDQ3Lf392n-H3wudWbeEjdc1kzRNaFQHQQ7SGXYs7JB71P9dakH01BH73o3ovuvOijF827zMPpsMnONCGZnavzf1BKQQFpx931nE-1-1tPPirGKAf8BX0zaf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233254606</pqid></control><display><type>article</type><title>The Rigid Orthogonal Procrustes Rotation Problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>ten Berge, Jos M. F</creator><creatorcontrib>ten Berge, Jos M. F</creatorcontrib><description>The problem of rotating a matrix orthogonally to a best least squares fit with another matrix of the same order has a closed-form solution based on a singular value decomposition. The optimal rotation matrix is not necessarily rigid, but may also involve a reflection. In some applications, only rigid rotations are permitted. Gower (1976) has proposed a method for suppressing reflections in cases where that is necessary. This paper proves that Gower's solution does indeed give the best least squares fit over rigid rotation when the unconstrained solution is not rigid. Also, special cases that have multiple solutions are discussed.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-004-1160-5</identifier><identifier>CODEN: PSMTA2</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Biological and medical sciences ; Computation ; Decomposition ; Eigenvalues ; Eigenvectors ; Equations (Mathematics) ; Factor Analysis ; Fundamental and applied biological sciences. Psychology ; Least Squares Statistics ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics ; Psychometrics. Statistics. Methodology ; Statistical Analysis ; Statistics. Mathematics ; Symmetry</subject><ispartof>Psychometrika, 2006-03, Vol.71 (1), p.201-205</ispartof><rights>2007 INIST-CNRS</rights><rights>The Psychometric Society 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-155ace896fe35707bc705b88b07401c02f8bbb3f59f546b3e76998d3b2677fda3</citedby><cites>FETCH-LOGICAL-c323t-155ace896fe35707bc705b88b07401c02f8bbb3f59f546b3e76998d3b2677fda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ922150$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17761031$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ten Berge, Jos M. F</creatorcontrib><title>The Rigid Orthogonal Procrustes Rotation Problem</title><title>Psychometrika</title><description>The problem of rotating a matrix orthogonally to a best least squares fit with another matrix of the same order has a closed-form solution based on a singular value decomposition. The optimal rotation matrix is not necessarily rigid, but may also involve a reflection. In some applications, only rigid rotations are permitted. Gower (1976) has proposed a method for suppressing reflections in cases where that is necessary. This paper proves that Gower's solution does indeed give the best least squares fit over rigid rotation when the unconstrained solution is not rigid. Also, special cases that have multiple solutions are discussed.</description><subject>Biological and medical sciences</subject><subject>Computation</subject><subject>Decomposition</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Equations (Mathematics)</subject><subject>Factor Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Least Squares Statistics</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Statistical Analysis</subject><subject>Statistics. Mathematics</subject><subject>Symmetry</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkE1LAzEQhoMoWKs_QPCwCB5XJ5nmY49S6heFSqnnkKRJu2Xb1GR78N-7ZYueZph53mF4CLml8EgB5FOmFFGUAKOSUgElPyMDqroGKgXnZACAWCJleEmuct4AQEWVGhBYrH0xr1f1spildh1XcWea4jNFlw659bmYx9a0ddwdZ7bx22tyEUyT_c2pDsnXy2Qxfiuns9f38fO0dMiwLSnnxnlVieCRS5DWSeBWKQtyBNQBC8pai4FXgY-ERS9FVaklWiakDEuDQ3Lf392n-H3wudWbeEjdc1kzRNaFQHQQ7SGXYs7JB71P9dakH01BH73o3ovuvOijF827zMPpsMnONCGZnavzf1BKQQFpx931nE-1-1tPPirGKAf8BX0zaf0</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>ten Berge, Jos M. F</creator><general>Springer</general><general>Springer Nature B.V</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TK</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20060301</creationdate><title>The Rigid Orthogonal Procrustes Rotation Problem</title><author>ten Berge, Jos M. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-155ace896fe35707bc705b88b07401c02f8bbb3f59f546b3e76998d3b2677fda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biological and medical sciences</topic><topic>Computation</topic><topic>Decomposition</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Equations (Mathematics)</topic><topic>Factor Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Least Squares Statistics</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Statistical Analysis</topic><topic>Statistics. Mathematics</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ten Berge, Jos M. F</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Education Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ten Berge, Jos M. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ922150</ericid><atitle>The Rigid Orthogonal Procrustes Rotation Problem</atitle><jtitle>Psychometrika</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>71</volume><issue>1</issue><spage>201</spage><epage>205</epage><pages>201-205</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><coden>PSMTA2</coden><abstract>The problem of rotating a matrix orthogonally to a best least squares fit with another matrix of the same order has a closed-form solution based on a singular value decomposition. The optimal rotation matrix is not necessarily rigid, but may also involve a reflection. In some applications, only rigid rotations are permitted. Gower (1976) has proposed a method for suppressing reflections in cases where that is necessary. This paper proves that Gower's solution does indeed give the best least squares fit over rigid rotation when the unconstrained solution is not rigid. Also, special cases that have multiple solutions are discussed.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s11336-004-1160-5</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 2006-03, Vol.71 (1), p.201-205
issn 0033-3123
1860-0980
language eng
recordid cdi_proquest_journals_233254606
source SpringerLink Journals - AutoHoldings
subjects Biological and medical sciences
Computation
Decomposition
Eigenvalues
Eigenvectors
Equations (Mathematics)
Factor Analysis
Fundamental and applied biological sciences. Psychology
Least Squares Statistics
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychometrics
Psychometrics. Statistics. Methodology
Statistical Analysis
Statistics. Mathematics
Symmetry
title The Rigid Orthogonal Procrustes Rotation Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T03%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Rigid%20Orthogonal%20Procrustes%20Rotation%20Problem&rft.jtitle=Psychometrika&rft.au=ten%20Berge,%20Jos%20M.%20F&rft.date=2006-03-01&rft.volume=71&rft.issue=1&rft.spage=201&rft.epage=205&rft.pages=201-205&rft.issn=0033-3123&rft.eissn=1860-0980&rft.coden=PSMTA2&rft_id=info:doi/10.1007/s11336-004-1160-5&rft_dat=%3Cproquest_cross%3E1103661531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=233254606&rft_id=info:pmid/&rft_ericid=EJ922150&rfr_iscdi=true