Recent Research Trends in Point Defects in Copper Iodide Semiconductors
Copper iodide is a transparent p -type semiconductor that can be applied in thin-film transistors, transparent conductors, and light-emitting devices. Point defects affect the semiconductor properties of copper iodide. Therefore, many researchers have attempted to reveal the properties of point defe...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2020-02, Vol.49 (2), p.907-909 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 909 |
---|---|
container_issue | 2 |
container_start_page | 907 |
container_title | Journal of electronic materials |
container_volume | 49 |
creator | Koyasu, Satoshi Miyauchi, Masahiro |
description | Copper iodide is a transparent
p
-type semiconductor that can be applied in thin-film transistors, transparent conductors, and light-emitting devices. Point defects affect the semiconductor properties of copper iodide. Therefore, many researchers have attempted to reveal the properties of point defects in copper iodide. A typical optical property related to point defects is photoluminescence (PL). PL peaks (430 nm and 700 nm) derived from defects have been reported for single-crystalline copper iodide. Density functional theory (DFT) studies reveal that the most stable defect species is the copper vacancy (
V
Cu
). These studies report that PL energies and defect species can be associated using experimental and DFT analyses. Researchers have also introduced defects into copper iodide single crystals or thin films artificially by controlling the annealing atmosphere and observed the relationship between the PL or absorption energy and Cu/I ratio. A comparison of this result with DFT results revealed that the photoactive defects were copper vacancies (
V
Cu
), iodine vacancies (
V
I
), and iodine ions substituted at copper sites (I
Cu
). Elucidation of the origin of fluorescence and coloration has enabled active control of optical properties via synthesis conditions. However, more drastic control of optical or electrical properties by doping is required for fabrication of actual devices. Some DFT studies on chalcogen doping have been reported; however, more theoretical and experimental studies are required. |
doi_str_mv | 10.1007/s11664-019-07833-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2332279818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332279818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f1f940f48e71a9c5f88566126487df568ead5691b42e4c93da94c25cfc9d93933</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBczSTbLLJUarWQkGpFbyFNZnoFrtZk-3BPr1rK3jzNDDz_f_AR8g5sEtgrLrKAEqVlIGhrNJC0O0BGYEsBQWtXg7JiAkFVHIhj8lJzivGQIKGEZku0GHbFwvMWCf3XiwTtj4XTVs8xmY43GBA1-8Wk9h1mIpZ9I3H4gnXjYut37g-pnxKjkL9kfHsd47J893tcnJP5w_T2eR6Tp3QsqcBgilZKDVWUBsng9ZSKeCq1JUPUmmsvVQGXkuOpTPC16Z0XLrgjDfCCDEmF_veLsXPDeberuImtcNLy4XgvDIa9EDxPeVSzDlhsF1q1nX6ssDsjzC7F2YHYXYnzG6HkNiH8gC3b5j-qv9JfQM0Y23g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332279818</pqid></control><display><type>article</type><title>Recent Research Trends in Point Defects in Copper Iodide Semiconductors</title><source>Springer Nature - Complete Springer Journals</source><creator>Koyasu, Satoshi ; Miyauchi, Masahiro</creator><creatorcontrib>Koyasu, Satoshi ; Miyauchi, Masahiro</creatorcontrib><description>Copper iodide is a transparent
p
-type semiconductor that can be applied in thin-film transistors, transparent conductors, and light-emitting devices. Point defects affect the semiconductor properties of copper iodide. Therefore, many researchers have attempted to reveal the properties of point defects in copper iodide. A typical optical property related to point defects is photoluminescence (PL). PL peaks (430 nm and 700 nm) derived from defects have been reported for single-crystalline copper iodide. Density functional theory (DFT) studies reveal that the most stable defect species is the copper vacancy (
V
Cu
). These studies report that PL energies and defect species can be associated using experimental and DFT analyses. Researchers have also introduced defects into copper iodide single crystals or thin films artificially by controlling the annealing atmosphere and observed the relationship between the PL or absorption energy and Cu/I ratio. A comparison of this result with DFT results revealed that the photoactive defects were copper vacancies (
V
Cu
), iodine vacancies (
V
I
), and iodine ions substituted at copper sites (I
Cu
). Elucidation of the origin of fluorescence and coloration has enabled active control of optical properties via synthesis conditions. However, more drastic control of optical or electrical properties by doping is required for fabrication of actual devices. Some DFT studies on chalcogen doping have been reported; however, more theoretical and experimental studies are required.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07833-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Active control ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conductors ; Copper ; Crystal defects ; Density functional theory ; Doping ; Electrical properties ; Electronics and Microelectronics ; Fluorescence ; Instrumentation ; Invited Commentary ; Iodine ; Materials Science ; Optical and Electronic Materials ; Optical properties ; P-type semiconductors ; Photoluminescence ; Point defects ; Researchers ; Semiconductor devices ; Single crystals ; Solid State Physics ; Thin film transistors ; Vacancies</subject><ispartof>Journal of electronic materials, 2020-02, Vol.49 (2), p.907-909</ispartof><rights>The Minerals, Metals & Materials Society 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f1f940f48e71a9c5f88566126487df568ead5691b42e4c93da94c25cfc9d93933</citedby><cites>FETCH-LOGICAL-c385t-f1f940f48e71a9c5f88566126487df568ead5691b42e4c93da94c25cfc9d93933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-019-07833-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-019-07833-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Koyasu, Satoshi</creatorcontrib><creatorcontrib>Miyauchi, Masahiro</creatorcontrib><title>Recent Research Trends in Point Defects in Copper Iodide Semiconductors</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Copper iodide is a transparent
p
-type semiconductor that can be applied in thin-film transistors, transparent conductors, and light-emitting devices. Point defects affect the semiconductor properties of copper iodide. Therefore, many researchers have attempted to reveal the properties of point defects in copper iodide. A typical optical property related to point defects is photoluminescence (PL). PL peaks (430 nm and 700 nm) derived from defects have been reported for single-crystalline copper iodide. Density functional theory (DFT) studies reveal that the most stable defect species is the copper vacancy (
V
Cu
). These studies report that PL energies and defect species can be associated using experimental and DFT analyses. Researchers have also introduced defects into copper iodide single crystals or thin films artificially by controlling the annealing atmosphere and observed the relationship between the PL or absorption energy and Cu/I ratio. A comparison of this result with DFT results revealed that the photoactive defects were copper vacancies (
V
Cu
), iodine vacancies (
V
I
), and iodine ions substituted at copper sites (I
Cu
). Elucidation of the origin of fluorescence and coloration has enabled active control of optical properties via synthesis conditions. However, more drastic control of optical or electrical properties by doping is required for fabrication of actual devices. Some DFT studies on chalcogen doping have been reported; however, more theoretical and experimental studies are required.</description><subject>Active control</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conductors</subject><subject>Copper</subject><subject>Crystal defects</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Electrical properties</subject><subject>Electronics and Microelectronics</subject><subject>Fluorescence</subject><subject>Instrumentation</subject><subject>Invited Commentary</subject><subject>Iodine</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>P-type semiconductors</subject><subject>Photoluminescence</subject><subject>Point defects</subject><subject>Researchers</subject><subject>Semiconductor devices</subject><subject>Single crystals</subject><subject>Solid State Physics</subject><subject>Thin film transistors</subject><subject>Vacancies</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMFKAzEQhoMoWKsv4GnBczSTbLLJUarWQkGpFbyFNZnoFrtZk-3BPr1rK3jzNDDz_f_AR8g5sEtgrLrKAEqVlIGhrNJC0O0BGYEsBQWtXg7JiAkFVHIhj8lJzivGQIKGEZku0GHbFwvMWCf3XiwTtj4XTVs8xmY43GBA1-8Wk9h1mIpZ9I3H4gnXjYut37g-pnxKjkL9kfHsd47J893tcnJP5w_T2eR6Tp3QsqcBgilZKDVWUBsng9ZSKeCq1JUPUmmsvVQGXkuOpTPC16Z0XLrgjDfCCDEmF_veLsXPDeberuImtcNLy4XgvDIa9EDxPeVSzDlhsF1q1nX6ssDsjzC7F2YHYXYnzG6HkNiH8gC3b5j-qv9JfQM0Y23g</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Koyasu, Satoshi</creator><creator>Miyauchi, Masahiro</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20200201</creationdate><title>Recent Research Trends in Point Defects in Copper Iodide Semiconductors</title><author>Koyasu, Satoshi ; Miyauchi, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f1f940f48e71a9c5f88566126487df568ead5691b42e4c93da94c25cfc9d93933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active control</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conductors</topic><topic>Copper</topic><topic>Crystal defects</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Electrical properties</topic><topic>Electronics and Microelectronics</topic><topic>Fluorescence</topic><topic>Instrumentation</topic><topic>Invited Commentary</topic><topic>Iodine</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>P-type semiconductors</topic><topic>Photoluminescence</topic><topic>Point defects</topic><topic>Researchers</topic><topic>Semiconductor devices</topic><topic>Single crystals</topic><topic>Solid State Physics</topic><topic>Thin film transistors</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koyasu, Satoshi</creatorcontrib><creatorcontrib>Miyauchi, Masahiro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koyasu, Satoshi</au><au>Miyauchi, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Research Trends in Point Defects in Copper Iodide Semiconductors</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>49</volume><issue>2</issue><spage>907</spage><epage>909</epage><pages>907-909</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Copper iodide is a transparent
p
-type semiconductor that can be applied in thin-film transistors, transparent conductors, and light-emitting devices. Point defects affect the semiconductor properties of copper iodide. Therefore, many researchers have attempted to reveal the properties of point defects in copper iodide. A typical optical property related to point defects is photoluminescence (PL). PL peaks (430 nm and 700 nm) derived from defects have been reported for single-crystalline copper iodide. Density functional theory (DFT) studies reveal that the most stable defect species is the copper vacancy (
V
Cu
). These studies report that PL energies and defect species can be associated using experimental and DFT analyses. Researchers have also introduced defects into copper iodide single crystals or thin films artificially by controlling the annealing atmosphere and observed the relationship between the PL or absorption energy and Cu/I ratio. A comparison of this result with DFT results revealed that the photoactive defects were copper vacancies (
V
Cu
), iodine vacancies (
V
I
), and iodine ions substituted at copper sites (I
Cu
). Elucidation of the origin of fluorescence and coloration has enabled active control of optical properties via synthesis conditions. However, more drastic control of optical or electrical properties by doping is required for fabrication of actual devices. Some DFT studies on chalcogen doping have been reported; however, more theoretical and experimental studies are required.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07833-z</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2020-02, Vol.49 (2), p.907-909 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2332279818 |
source | Springer Nature - Complete Springer Journals |
subjects | Active control Characterization and Evaluation of Materials Chemistry and Materials Science Conductors Copper Crystal defects Density functional theory Doping Electrical properties Electronics and Microelectronics Fluorescence Instrumentation Invited Commentary Iodine Materials Science Optical and Electronic Materials Optical properties P-type semiconductors Photoluminescence Point defects Researchers Semiconductor devices Single crystals Solid State Physics Thin film transistors Vacancies |
title | Recent Research Trends in Point Defects in Copper Iodide Semiconductors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Research%20Trends%20in%20Point%20Defects%20in%20Copper%20Iodide%20Semiconductors&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Koyasu,%20Satoshi&rft.date=2020-02-01&rft.volume=49&rft.issue=2&rft.spage=907&rft.epage=909&rft.pages=907-909&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07833-z&rft_dat=%3Cproquest_cross%3E2332279818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332279818&rft_id=info:pmid/&rfr_iscdi=true |