Why is Homology so Powerful?

My short answer to this question is that homology is powerful because it computes invariants of higher categories. In this article we show how this true by taking a leisurely tour of the connection between category theory and homological algebra.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-02
1. Verfasser: Master, Jade
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Master, Jade
description My short answer to this question is that homology is powerful because it computes invariants of higher categories. In this article we show how this true by taking a leisurely tour of the connection between category theory and homological algebra.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2332251286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332251286</sourcerecordid><originalsourceid>FETCH-proquest_journals_23322512863</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQCc-oVMgsVvDIz83PyU-vVCjOVwjIL08tSivNsedhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXigFUZGpoZGFmbGxKkCAAWPKzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332251286</pqid></control><display><type>article</type><title>Why is Homology so Powerful?</title><source>Freely Accessible Journals</source><creator>Master, Jade</creator><creatorcontrib>Master, Jade</creatorcontrib><description>My short answer to this question is that homology is powerful because it computes invariants of higher categories. In this article we show how this true by taking a leisurely tour of the connection between category theory and homological algebra.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homology ; Topology</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Master, Jade</creatorcontrib><title>Why is Homology so Powerful?</title><title>arXiv.org</title><description>My short answer to this question is that homology is powerful because it computes invariants of higher categories. In this article we show how this true by taking a leisurely tour of the connection between category theory and homological algebra.</description><subject>Homology</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQCc-oVMgsVvDIz83PyU-vVCjOVwjIL08tSivNsedhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXigFUZGpoZGFmbGxKkCAAWPKzw</recordid><startdate>20200229</startdate><enddate>20200229</enddate><creator>Master, Jade</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200229</creationdate><title>Why is Homology so Powerful?</title><author>Master, Jade</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23322512863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Homology</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Master, Jade</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Master, Jade</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Why is Homology so Powerful?</atitle><jtitle>arXiv.org</jtitle><date>2020-02-29</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>My short answer to this question is that homology is powerful because it computes invariants of higher categories. In this article we show how this true by taking a leisurely tour of the connection between category theory and homological algebra.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2332251286
source Freely Accessible Journals
subjects Homology
Topology
title Why is Homology so Powerful?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Why%20is%20Homology%20so%20Powerful?&rft.jtitle=arXiv.org&rft.au=Master,%20Jade&rft.date=2020-02-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2332251286%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332251286&rft_id=info:pmid/&rfr_iscdi=true