Impact of GPS Processing on the Estimation of Snow Water Equivalent Using Refracted GPS Signals
Global navigation satellite system (GNSS) antennas buried underneath a snowpack have a high potential for in situ snow water equivalent (SWE) estimation. Automated and continuous SWE quantification independent of weather conditions could enhance snow hydrological monitoring and modeling. Accurate an...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2020-01, Vol.58 (1), p.123-135 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Global navigation satellite system (GNSS) antennas buried underneath a snowpack have a high potential for in situ snow water equivalent (SWE) estimation. Automated and continuous SWE quantification independent of weather conditions could enhance snow hydrological monitoring and modeling. Accurate and reliable in situ data are needed for the calibration and validation of remote sensing data and snowpack modeling. A relative bias of less than 5% is achieved using sub-snow global positioning system (GPS) antennas (GPS refractometry) during a three full seasons time period in the Swiss Alps. A systematic overview regarding the temporal reliability of the sub-snow GPS derived results is, however, missing for this emerging technique. Moreover, GPS processing impacts the results significantly. Different GPS processing parameters are therefore selected and their influence on the SWE estimation is investigated. The impact of elevation-dependent weighting, the elevation cutoff angles, and the time intervals for SWE estimation are systematically assessed. The best results are achieved using all observations with an elevation-dependent weighting scheme. Moreover, the SWE estimation performance is equally accurate for hourly SWE estimation as for lower temporal resolutions up to daily estimates. The impact of snow on the coordinate solution is furthermore evaluated. While the east and north components are not systematically influenced by the overlying snowpack, the vertical component exhibits a significant variation and strongly depends on the SWE. The biased vertical component therefore provides an additional possibility to estimate SWE. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2019.2934016 |