High-mobility nanometer-thick crystalline In–Sm–O thin-film transistors via aqueous solution processing
Thin-film transistors (TFTs) based on solution-derived metal oxides hold great potential in emerging low-cost large-area printed electronics. Despite recent impressive progress, these device performances are far behind those of their corresponding vacuum-based counterparts, impeding their future com...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-01, Vol.8 (1), p.310-318 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 1 |
container_start_page | 310 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 8 |
creator | Li, Yanwei Zhu, Deliang Xu, Wangying Han, Shun Fang, Ming Liu, Wenjun Cao, Peijiang Lu, Youming |
description | Thin-film transistors (TFTs) based on solution-derived metal oxides hold great potential in emerging low-cost large-area printed electronics. Despite recent impressive progress, these device performances are far behind those of their corresponding vacuum-based counterparts, impeding their future commercialization. In this work, we designed and created high-performance TFTs based on a nanometer-thick (down to 5 nm) crystalline In–Sm–O channel
via
aqueous solution processing, with a performance comparable to those of existing vacuum-processed metal oxides. The microstructural, chemical, optical, and electrical properties of the ultra-thin In–Sm–O samples as a function of Sm doping content (0–10%) were comprehensively investigated. The In–Sm–O TFTs (5% Sm) on SiO
2
/Si dielectrics demonstrated state-of-the-art performance, including a high mobility of 21.51 ± 1.33 cm
2
V
−1
s
−1
, subthreshold swing of 0.66 ± 0.06 V per decade, threshold voltage of 2.14 ± 0.44 V, on/off current ratio >10
8
, and remarkable bias stress stability. The success of In–Sm–O was attributed to the high quality of the crystalline In
2
O
3
matrix, the ideal nature of Sm dopant in suppressing oxygen vacancies, as well as the ultrathin and atomically smooth nature of the channel layer. Therefore, the aqueous solution-processed ultra-thin In–Sm–O channel is expected to enable the realization of future low-cost, large-area, and high-performance green electronics. |
doi_str_mv | 10.1039/C9TC05162G |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2332017723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332017723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-9ff68c7b040360880674a1a696867fe31686ea059dde99aa99f2c700dc6881013</originalsourceid><addsrcrecordid>eNpFkMFKAzEQhoMoWGovPkHAm7A62XSzyVEWbQuFHqznJU2zbdrdpCZZoTffwTf0SUyp6BzmH5hh_o8foVsCDwSoeKzEsoKCsHxygQY5FJCVBR1f_s05u0ajEHaQihPGmRig_dRstlnnVqY18YittK7TUfssbo3aY-WPIcq2NVbjmf3-_HrtUlvgtLVZY9oORy9tMCE6H_CHkVi-99r1AQfX9tE4iw_eKR2CsZsbdNXINujRrw7R28vzsppm88VkVj3NM5ULFjPRNIyrcgVjoAw4B1aOJZFMJOKy0fREriUUYr3WQkgpRJOrEmCtGOcECB2iu_PfZJ1oQqx3rvc2WdY5pTmQskw6RPfnK-VdCF439cGbTvpjTaA-5Vn_50l_AE__alw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332017723</pqid></control><display><type>article</type><title>High-mobility nanometer-thick crystalline In–Sm–O thin-film transistors via aqueous solution processing</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Yanwei ; Zhu, Deliang ; Xu, Wangying ; Han, Shun ; Fang, Ming ; Liu, Wenjun ; Cao, Peijiang ; Lu, Youming</creator><creatorcontrib>Li, Yanwei ; Zhu, Deliang ; Xu, Wangying ; Han, Shun ; Fang, Ming ; Liu, Wenjun ; Cao, Peijiang ; Lu, Youming</creatorcontrib><description>Thin-film transistors (TFTs) based on solution-derived metal oxides hold great potential in emerging low-cost large-area printed electronics. Despite recent impressive progress, these device performances are far behind those of their corresponding vacuum-based counterparts, impeding their future commercialization. In this work, we designed and created high-performance TFTs based on a nanometer-thick (down to 5 nm) crystalline In–Sm–O channel
via
aqueous solution processing, with a performance comparable to those of existing vacuum-processed metal oxides. The microstructural, chemical, optical, and electrical properties of the ultra-thin In–Sm–O samples as a function of Sm doping content (0–10%) were comprehensively investigated. The In–Sm–O TFTs (5% Sm) on SiO
2
/Si dielectrics demonstrated state-of-the-art performance, including a high mobility of 21.51 ± 1.33 cm
2
V
−1
s
−1
, subthreshold swing of 0.66 ± 0.06 V per decade, threshold voltage of 2.14 ± 0.44 V, on/off current ratio >10
8
, and remarkable bias stress stability. The success of In–Sm–O was attributed to the high quality of the crystalline In
2
O
3
matrix, the ideal nature of Sm dopant in suppressing oxygen vacancies, as well as the ultrathin and atomically smooth nature of the channel layer. Therefore, the aqueous solution-processed ultra-thin In–Sm–O channel is expected to enable the realization of future low-cost, large-area, and high-performance green electronics.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/C9TC05162G</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aqueous solutions ; Commercialization ; Crystal structure ; Crystallinity ; Electrical properties ; Electronics ; Indium oxides ; Low cost ; Metal oxides ; Optical properties ; Organic chemistry ; Semiconductor devices ; Silicon dioxide ; Thin film transistors ; Threshold voltage ; Transistors</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-01, Vol.8 (1), p.310-318</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-9ff68c7b040360880674a1a696867fe31686ea059dde99aa99f2c700dc6881013</citedby><cites>FETCH-LOGICAL-c296t-9ff68c7b040360880674a1a696867fe31686ea059dde99aa99f2c700dc6881013</cites><orcidid>0000-0002-8862-7224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Yanwei</creatorcontrib><creatorcontrib>Zhu, Deliang</creatorcontrib><creatorcontrib>Xu, Wangying</creatorcontrib><creatorcontrib>Han, Shun</creatorcontrib><creatorcontrib>Fang, Ming</creatorcontrib><creatorcontrib>Liu, Wenjun</creatorcontrib><creatorcontrib>Cao, Peijiang</creatorcontrib><creatorcontrib>Lu, Youming</creatorcontrib><title>High-mobility nanometer-thick crystalline In–Sm–O thin-film transistors via aqueous solution processing</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Thin-film transistors (TFTs) based on solution-derived metal oxides hold great potential in emerging low-cost large-area printed electronics. Despite recent impressive progress, these device performances are far behind those of their corresponding vacuum-based counterparts, impeding their future commercialization. In this work, we designed and created high-performance TFTs based on a nanometer-thick (down to 5 nm) crystalline In–Sm–O channel
via
aqueous solution processing, with a performance comparable to those of existing vacuum-processed metal oxides. The microstructural, chemical, optical, and electrical properties of the ultra-thin In–Sm–O samples as a function of Sm doping content (0–10%) were comprehensively investigated. The In–Sm–O TFTs (5% Sm) on SiO
2
/Si dielectrics demonstrated state-of-the-art performance, including a high mobility of 21.51 ± 1.33 cm
2
V
−1
s
−1
, subthreshold swing of 0.66 ± 0.06 V per decade, threshold voltage of 2.14 ± 0.44 V, on/off current ratio >10
8
, and remarkable bias stress stability. The success of In–Sm–O was attributed to the high quality of the crystalline In
2
O
3
matrix, the ideal nature of Sm dopant in suppressing oxygen vacancies, as well as the ultrathin and atomically smooth nature of the channel layer. Therefore, the aqueous solution-processed ultra-thin In–Sm–O channel is expected to enable the realization of future low-cost, large-area, and high-performance green electronics.</description><subject>Aqueous solutions</subject><subject>Commercialization</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Electrical properties</subject><subject>Electronics</subject><subject>Indium oxides</subject><subject>Low cost</subject><subject>Metal oxides</subject><subject>Optical properties</subject><subject>Organic chemistry</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>Thin film transistors</subject><subject>Threshold voltage</subject><subject>Transistors</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKAzEQhoMoWGovPkHAm7A62XSzyVEWbQuFHqznJU2zbdrdpCZZoTffwTf0SUyp6BzmH5hh_o8foVsCDwSoeKzEsoKCsHxygQY5FJCVBR1f_s05u0ajEHaQihPGmRig_dRstlnnVqY18YittK7TUfssbo3aY-WPIcq2NVbjmf3-_HrtUlvgtLVZY9oORy9tMCE6H_CHkVi-99r1AQfX9tE4iw_eKR2CsZsbdNXINujRrw7R28vzsppm88VkVj3NM5ULFjPRNIyrcgVjoAw4B1aOJZFMJOKy0fREriUUYr3WQkgpRJOrEmCtGOcECB2iu_PfZJ1oQqx3rvc2WdY5pTmQskw6RPfnK-VdCF439cGbTvpjTaA-5Vn_50l_AE__alw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Li, Yanwei</creator><creator>Zhu, Deliang</creator><creator>Xu, Wangying</creator><creator>Han, Shun</creator><creator>Fang, Ming</creator><creator>Liu, Wenjun</creator><creator>Cao, Peijiang</creator><creator>Lu, Youming</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8862-7224</orcidid></search><sort><creationdate>20200101</creationdate><title>High-mobility nanometer-thick crystalline In–Sm–O thin-film transistors via aqueous solution processing</title><author>Li, Yanwei ; Zhu, Deliang ; Xu, Wangying ; Han, Shun ; Fang, Ming ; Liu, Wenjun ; Cao, Peijiang ; Lu, Youming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-9ff68c7b040360880674a1a696867fe31686ea059dde99aa99f2c700dc6881013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous solutions</topic><topic>Commercialization</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Electrical properties</topic><topic>Electronics</topic><topic>Indium oxides</topic><topic>Low cost</topic><topic>Metal oxides</topic><topic>Optical properties</topic><topic>Organic chemistry</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>Thin film transistors</topic><topic>Threshold voltage</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanwei</creatorcontrib><creatorcontrib>Zhu, Deliang</creatorcontrib><creatorcontrib>Xu, Wangying</creatorcontrib><creatorcontrib>Han, Shun</creatorcontrib><creatorcontrib>Fang, Ming</creatorcontrib><creatorcontrib>Liu, Wenjun</creatorcontrib><creatorcontrib>Cao, Peijiang</creatorcontrib><creatorcontrib>Lu, Youming</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanwei</au><au>Zhu, Deliang</au><au>Xu, Wangying</au><au>Han, Shun</au><au>Fang, Ming</au><au>Liu, Wenjun</au><au>Cao, Peijiang</au><au>Lu, Youming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-mobility nanometer-thick crystalline In–Sm–O thin-film transistors via aqueous solution processing</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>1</issue><spage>310</spage><epage>318</epage><pages>310-318</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Thin-film transistors (TFTs) based on solution-derived metal oxides hold great potential in emerging low-cost large-area printed electronics. Despite recent impressive progress, these device performances are far behind those of their corresponding vacuum-based counterparts, impeding their future commercialization. In this work, we designed and created high-performance TFTs based on a nanometer-thick (down to 5 nm) crystalline In–Sm–O channel
via
aqueous solution processing, with a performance comparable to those of existing vacuum-processed metal oxides. The microstructural, chemical, optical, and electrical properties of the ultra-thin In–Sm–O samples as a function of Sm doping content (0–10%) were comprehensively investigated. The In–Sm–O TFTs (5% Sm) on SiO
2
/Si dielectrics demonstrated state-of-the-art performance, including a high mobility of 21.51 ± 1.33 cm
2
V
−1
s
−1
, subthreshold swing of 0.66 ± 0.06 V per decade, threshold voltage of 2.14 ± 0.44 V, on/off current ratio >10
8
, and remarkable bias stress stability. The success of In–Sm–O was attributed to the high quality of the crystalline In
2
O
3
matrix, the ideal nature of Sm dopant in suppressing oxygen vacancies, as well as the ultrathin and atomically smooth nature of the channel layer. Therefore, the aqueous solution-processed ultra-thin In–Sm–O channel is expected to enable the realization of future low-cost, large-area, and high-performance green electronics.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9TC05162G</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8862-7224</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-01, Vol.8 (1), p.310-318 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_proquest_journals_2332017723 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Aqueous solutions Commercialization Crystal structure Crystallinity Electrical properties Electronics Indium oxides Low cost Metal oxides Optical properties Organic chemistry Semiconductor devices Silicon dioxide Thin film transistors Threshold voltage Transistors |
title | High-mobility nanometer-thick crystalline In–Sm–O thin-film transistors via aqueous solution processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-mobility%20nanometer-thick%20crystalline%20In%E2%80%93Sm%E2%80%93O%20thin-film%20transistors%20via%20aqueous%20solution%20processing&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Li,%20Yanwei&rft.date=2020-01-01&rft.volume=8&rft.issue=1&rft.spage=310&rft.epage=318&rft.pages=310-318&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/C9TC05162G&rft_dat=%3Cproquest_cross%3E2332017723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332017723&rft_id=info:pmid/&rfr_iscdi=true |