High-mobility nanometer-thick crystalline In–Sm–O thin-film transistors via aqueous solution processing

Thin-film transistors (TFTs) based on solution-derived metal oxides hold great potential in emerging low-cost large-area printed electronics. Despite recent impressive progress, these device performances are far behind those of their corresponding vacuum-based counterparts, impeding their future com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-01, Vol.8 (1), p.310-318
Hauptverfasser: Li, Yanwei, Zhu, Deliang, Xu, Wangying, Han, Shun, Fang, Ming, Liu, Wenjun, Cao, Peijiang, Lu, Youming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 1
container_start_page 310
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 8
creator Li, Yanwei
Zhu, Deliang
Xu, Wangying
Han, Shun
Fang, Ming
Liu, Wenjun
Cao, Peijiang
Lu, Youming
description Thin-film transistors (TFTs) based on solution-derived metal oxides hold great potential in emerging low-cost large-area printed electronics. Despite recent impressive progress, these device performances are far behind those of their corresponding vacuum-based counterparts, impeding their future commercialization. In this work, we designed and created high-performance TFTs based on a nanometer-thick (down to 5 nm) crystalline In–Sm–O channel via aqueous solution processing, with a performance comparable to those of existing vacuum-processed metal oxides. The microstructural, chemical, optical, and electrical properties of the ultra-thin In–Sm–O samples as a function of Sm doping content (0–10%) were comprehensively investigated. The In–Sm–O TFTs (5% Sm) on SiO 2 /Si dielectrics demonstrated state-of-the-art performance, including a high mobility of 21.51 ± 1.33 cm 2 V −1 s −1 , subthreshold swing of 0.66 ± 0.06 V per decade, threshold voltage of 2.14 ± 0.44 V, on/off current ratio >10 8 , and remarkable bias stress stability. The success of In–Sm–O was attributed to the high quality of the crystalline In 2 O 3 matrix, the ideal nature of Sm dopant in suppressing oxygen vacancies, as well as the ultrathin and atomically smooth nature of the channel layer. Therefore, the aqueous solution-processed ultra-thin In–Sm–O channel is expected to enable the realization of future low-cost, large-area, and high-performance green electronics.
doi_str_mv 10.1039/C9TC05162G
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2332017723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332017723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-9ff68c7b040360880674a1a696867fe31686ea059dde99aa99f2c700dc6881013</originalsourceid><addsrcrecordid>eNpFkMFKAzEQhoMoWGovPkHAm7A62XSzyVEWbQuFHqznJU2zbdrdpCZZoTffwTf0SUyp6BzmH5hh_o8foVsCDwSoeKzEsoKCsHxygQY5FJCVBR1f_s05u0ajEHaQihPGmRig_dRstlnnVqY18YittK7TUfssbo3aY-WPIcq2NVbjmf3-_HrtUlvgtLVZY9oORy9tMCE6H_CHkVi-99r1AQfX9tE4iw_eKR2CsZsbdNXINujRrw7R28vzsppm88VkVj3NM5ULFjPRNIyrcgVjoAw4B1aOJZFMJOKy0fREriUUYr3WQkgpRJOrEmCtGOcECB2iu_PfZJ1oQqx3rvc2WdY5pTmQskw6RPfnK-VdCF439cGbTvpjTaA-5Vn_50l_AE__alw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332017723</pqid></control><display><type>article</type><title>High-mobility nanometer-thick crystalline In–Sm–O thin-film transistors via aqueous solution processing</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Yanwei ; Zhu, Deliang ; Xu, Wangying ; Han, Shun ; Fang, Ming ; Liu, Wenjun ; Cao, Peijiang ; Lu, Youming</creator><creatorcontrib>Li, Yanwei ; Zhu, Deliang ; Xu, Wangying ; Han, Shun ; Fang, Ming ; Liu, Wenjun ; Cao, Peijiang ; Lu, Youming</creatorcontrib><description>Thin-film transistors (TFTs) based on solution-derived metal oxides hold great potential in emerging low-cost large-area printed electronics. Despite recent impressive progress, these device performances are far behind those of their corresponding vacuum-based counterparts, impeding their future commercialization. In this work, we designed and created high-performance TFTs based on a nanometer-thick (down to 5 nm) crystalline In–Sm–O channel via aqueous solution processing, with a performance comparable to those of existing vacuum-processed metal oxides. The microstructural, chemical, optical, and electrical properties of the ultra-thin In–Sm–O samples as a function of Sm doping content (0–10%) were comprehensively investigated. The In–Sm–O TFTs (5% Sm) on SiO 2 /Si dielectrics demonstrated state-of-the-art performance, including a high mobility of 21.51 ± 1.33 cm 2 V −1 s −1 , subthreshold swing of 0.66 ± 0.06 V per decade, threshold voltage of 2.14 ± 0.44 V, on/off current ratio &gt;10 8 , and remarkable bias stress stability. The success of In–Sm–O was attributed to the high quality of the crystalline In 2 O 3 matrix, the ideal nature of Sm dopant in suppressing oxygen vacancies, as well as the ultrathin and atomically smooth nature of the channel layer. Therefore, the aqueous solution-processed ultra-thin In–Sm–O channel is expected to enable the realization of future low-cost, large-area, and high-performance green electronics.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/C9TC05162G</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aqueous solutions ; Commercialization ; Crystal structure ; Crystallinity ; Electrical properties ; Electronics ; Indium oxides ; Low cost ; Metal oxides ; Optical properties ; Organic chemistry ; Semiconductor devices ; Silicon dioxide ; Thin film transistors ; Threshold voltage ; Transistors</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-01, Vol.8 (1), p.310-318</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-9ff68c7b040360880674a1a696867fe31686ea059dde99aa99f2c700dc6881013</citedby><cites>FETCH-LOGICAL-c296t-9ff68c7b040360880674a1a696867fe31686ea059dde99aa99f2c700dc6881013</cites><orcidid>0000-0002-8862-7224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Yanwei</creatorcontrib><creatorcontrib>Zhu, Deliang</creatorcontrib><creatorcontrib>Xu, Wangying</creatorcontrib><creatorcontrib>Han, Shun</creatorcontrib><creatorcontrib>Fang, Ming</creatorcontrib><creatorcontrib>Liu, Wenjun</creatorcontrib><creatorcontrib>Cao, Peijiang</creatorcontrib><creatorcontrib>Lu, Youming</creatorcontrib><title>High-mobility nanometer-thick crystalline In–Sm–O thin-film transistors via aqueous solution processing</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Thin-film transistors (TFTs) based on solution-derived metal oxides hold great potential in emerging low-cost large-area printed electronics. Despite recent impressive progress, these device performances are far behind those of their corresponding vacuum-based counterparts, impeding their future commercialization. In this work, we designed and created high-performance TFTs based on a nanometer-thick (down to 5 nm) crystalline In–Sm–O channel via aqueous solution processing, with a performance comparable to those of existing vacuum-processed metal oxides. The microstructural, chemical, optical, and electrical properties of the ultra-thin In–Sm–O samples as a function of Sm doping content (0–10%) were comprehensively investigated. The In–Sm–O TFTs (5% Sm) on SiO 2 /Si dielectrics demonstrated state-of-the-art performance, including a high mobility of 21.51 ± 1.33 cm 2 V −1 s −1 , subthreshold swing of 0.66 ± 0.06 V per decade, threshold voltage of 2.14 ± 0.44 V, on/off current ratio &gt;10 8 , and remarkable bias stress stability. The success of In–Sm–O was attributed to the high quality of the crystalline In 2 O 3 matrix, the ideal nature of Sm dopant in suppressing oxygen vacancies, as well as the ultrathin and atomically smooth nature of the channel layer. Therefore, the aqueous solution-processed ultra-thin In–Sm–O channel is expected to enable the realization of future low-cost, large-area, and high-performance green electronics.</description><subject>Aqueous solutions</subject><subject>Commercialization</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Electrical properties</subject><subject>Electronics</subject><subject>Indium oxides</subject><subject>Low cost</subject><subject>Metal oxides</subject><subject>Optical properties</subject><subject>Organic chemistry</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>Thin film transistors</subject><subject>Threshold voltage</subject><subject>Transistors</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKAzEQhoMoWGovPkHAm7A62XSzyVEWbQuFHqznJU2zbdrdpCZZoTffwTf0SUyp6BzmH5hh_o8foVsCDwSoeKzEsoKCsHxygQY5FJCVBR1f_s05u0ajEHaQihPGmRig_dRstlnnVqY18YittK7TUfssbo3aY-WPIcq2NVbjmf3-_HrtUlvgtLVZY9oORy9tMCE6H_CHkVi-99r1AQfX9tE4iw_eKR2CsZsbdNXINujRrw7R28vzsppm88VkVj3NM5ULFjPRNIyrcgVjoAw4B1aOJZFMJOKy0fREriUUYr3WQkgpRJOrEmCtGOcECB2iu_PfZJ1oQqx3rvc2WdY5pTmQskw6RPfnK-VdCF439cGbTvpjTaA-5Vn_50l_AE__alw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Li, Yanwei</creator><creator>Zhu, Deliang</creator><creator>Xu, Wangying</creator><creator>Han, Shun</creator><creator>Fang, Ming</creator><creator>Liu, Wenjun</creator><creator>Cao, Peijiang</creator><creator>Lu, Youming</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8862-7224</orcidid></search><sort><creationdate>20200101</creationdate><title>High-mobility nanometer-thick crystalline In–Sm–O thin-film transistors via aqueous solution processing</title><author>Li, Yanwei ; Zhu, Deliang ; Xu, Wangying ; Han, Shun ; Fang, Ming ; Liu, Wenjun ; Cao, Peijiang ; Lu, Youming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-9ff68c7b040360880674a1a696867fe31686ea059dde99aa99f2c700dc6881013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous solutions</topic><topic>Commercialization</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Electrical properties</topic><topic>Electronics</topic><topic>Indium oxides</topic><topic>Low cost</topic><topic>Metal oxides</topic><topic>Optical properties</topic><topic>Organic chemistry</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>Thin film transistors</topic><topic>Threshold voltage</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanwei</creatorcontrib><creatorcontrib>Zhu, Deliang</creatorcontrib><creatorcontrib>Xu, Wangying</creatorcontrib><creatorcontrib>Han, Shun</creatorcontrib><creatorcontrib>Fang, Ming</creatorcontrib><creatorcontrib>Liu, Wenjun</creatorcontrib><creatorcontrib>Cao, Peijiang</creatorcontrib><creatorcontrib>Lu, Youming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanwei</au><au>Zhu, Deliang</au><au>Xu, Wangying</au><au>Han, Shun</au><au>Fang, Ming</au><au>Liu, Wenjun</au><au>Cao, Peijiang</au><au>Lu, Youming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-mobility nanometer-thick crystalline In–Sm–O thin-film transistors via aqueous solution processing</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>1</issue><spage>310</spage><epage>318</epage><pages>310-318</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Thin-film transistors (TFTs) based on solution-derived metal oxides hold great potential in emerging low-cost large-area printed electronics. Despite recent impressive progress, these device performances are far behind those of their corresponding vacuum-based counterparts, impeding their future commercialization. In this work, we designed and created high-performance TFTs based on a nanometer-thick (down to 5 nm) crystalline In–Sm–O channel via aqueous solution processing, with a performance comparable to those of existing vacuum-processed metal oxides. The microstructural, chemical, optical, and electrical properties of the ultra-thin In–Sm–O samples as a function of Sm doping content (0–10%) were comprehensively investigated. The In–Sm–O TFTs (5% Sm) on SiO 2 /Si dielectrics demonstrated state-of-the-art performance, including a high mobility of 21.51 ± 1.33 cm 2 V −1 s −1 , subthreshold swing of 0.66 ± 0.06 V per decade, threshold voltage of 2.14 ± 0.44 V, on/off current ratio &gt;10 8 , and remarkable bias stress stability. The success of In–Sm–O was attributed to the high quality of the crystalline In 2 O 3 matrix, the ideal nature of Sm dopant in suppressing oxygen vacancies, as well as the ultrathin and atomically smooth nature of the channel layer. Therefore, the aqueous solution-processed ultra-thin In–Sm–O channel is expected to enable the realization of future low-cost, large-area, and high-performance green electronics.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9TC05162G</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8862-7224</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-01, Vol.8 (1), p.310-318
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2332017723
source Royal Society Of Chemistry Journals 2008-
subjects Aqueous solutions
Commercialization
Crystal structure
Crystallinity
Electrical properties
Electronics
Indium oxides
Low cost
Metal oxides
Optical properties
Organic chemistry
Semiconductor devices
Silicon dioxide
Thin film transistors
Threshold voltage
Transistors
title High-mobility nanometer-thick crystalline In–Sm–O thin-film transistors via aqueous solution processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-mobility%20nanometer-thick%20crystalline%20In%E2%80%93Sm%E2%80%93O%20thin-film%20transistors%20via%20aqueous%20solution%20processing&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Li,%20Yanwei&rft.date=2020-01-01&rft.volume=8&rft.issue=1&rft.spage=310&rft.epage=318&rft.pages=310-318&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/C9TC05162G&rft_dat=%3Cproquest_cross%3E2332017723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332017723&rft_id=info:pmid/&rfr_iscdi=true