A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems
We consider the constrained multi-objective optimization problem of finding Pareto critical points of difference of convex functions. The new approach proposed by Bento et al. (SIAM J Optim 28:1104–1120, 2018) to study the convergence of the proximal point method is applied. Our method minimizes at...
Gespeichert in:
Veröffentlicht in: | Computational optimization and applications 2020, Vol.75 (1), p.263-290 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 290 |
---|---|
container_issue | 1 |
container_start_page | 263 |
container_title | Computational optimization and applications |
container_volume | 75 |
creator | de Carvalho Bento, Glaydston Bitar, Sandro Dimy Barbosa da Cruz Neto, João Xavier Soubeyran, Antoine de Oliveira Souza, João Carlos |
description | We consider the constrained multi-objective optimization problem of finding Pareto critical points of difference of convex functions. The new approach proposed by Bento et al. (SIAM J Optim 28:1104–1120, 2018) to study the convergence of the proximal point method is applied. Our method minimizes at each iteration a convex approximation instead of the (non-convex) objective function constrained to a possibly non-convex set which assures the vector improving process. The motivation comes from the famous Group Dynamic problem in Behavioral Sciences where, at each step, a group of (possible badly informed) agents tries to increase his joint payoff, in order to be able to increase the payoff of each of them. In this way, at each step, this ascent process guarantees the stability of the group. Some encouraging preliminary numerical results are reported. |
doi_str_mv | 10.1007/s10589-019-00139-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2332006073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332006073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-f7f48bcde7f4fdef40a24c597895af88c5da23a5cfdbb7fa8e527d92c2a934573</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EEkvpC_RkiRNCgbGdbOzjagUUaSUu7dlyHLvrVWIH29m23HlvnAaVG8KSPdLo-8cz8yN0ReAjAWg_JQINFxWQcoGw8r5AG9K0rKJc1C_RBgTdVlsA9hq9SekEAKJldIN-7fAUw4Mb1YCn4HzGo8nH0GMbIu6dtSYarw0OFuvgz-YB29nr7IJP2Hk8zkN2VehOpuTOBZuyG91PtQD43uUjVtM0OL0mcsB3McwT7h-9Gp1evu4GM6a36JVVQzKXf-IFuv3y-WZ_XR2-f_223x0qzUSbK9vamne6NyXa3tgaFK11I1ouGmU5102vKFONtn3XtVZx09C2F1RTJVhdtnGB3q91j2qQUyxTx0cZlJPXu4NcckBZQwjUZ1LYdytbmvwxm5TlKczRl_YkZYwCbKFlhaIrpWNIKRr7XJaAXKyRqzWyWCOfrJFQRB9W0b3pgk3aLSt-FhZvagGUcljO0gj_f3rv8tOu92H2uUjZKk0F93cm_p3hH-39BizCtTY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332006073</pqid></control><display><type>article</type><title>A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems</title><source>Business Source Complete</source><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>de Carvalho Bento, Glaydston ; Bitar, Sandro Dimy Barbosa ; da Cruz Neto, João Xavier ; Soubeyran, Antoine ; de Oliveira Souza, João Carlos</creator><creatorcontrib>de Carvalho Bento, Glaydston ; Bitar, Sandro Dimy Barbosa ; da Cruz Neto, João Xavier ; Soubeyran, Antoine ; de Oliveira Souza, João Carlos</creatorcontrib><description>We consider the constrained multi-objective optimization problem of finding Pareto critical points of difference of convex functions. The new approach proposed by Bento et al. (SIAM J Optim 28:1104–1120, 2018) to study the convergence of the proximal point method is applied. Our method minimizes at each iteration a convex approximation instead of the (non-convex) objective function constrained to a possibly non-convex set which assures the vector improving process. The motivation comes from the famous Group Dynamic problem in Behavioral Sciences where, at each step, a group of (possible badly informed) agents tries to increase his joint payoff, in order to be able to increase the payoff of each of them. In this way, at each step, this ascent process guarantees the stability of the group. Some encouraging preliminary numerical results are reported.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-019-00139-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ascent ; Convex analysis ; Convex and Discrete Geometry ; Critical point ; Economics and Finance ; Goal programming ; Group dynamics ; Humanities and Social Sciences ; Iterative methods ; Management Science ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Mathematics, Applied ; Multiple objective analysis ; Operations Research ; Operations Research & Management Science ; Operations Research/Decision Theory ; Optimization ; Pareto optimization ; Physical Sciences ; Science & Technology ; Statistics ; Technology</subject><ispartof>Computational optimization and applications, 2020, Vol.75 (1), p.263-290</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Computational Optimization and Applications is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000490228000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c397t-f7f48bcde7f4fdef40a24c597895af88c5da23a5cfdbb7fa8e527d92c2a934573</citedby><cites>FETCH-LOGICAL-c397t-f7f48bcde7f4fdef40a24c597895af88c5da23a5cfdbb7fa8e527d92c2a934573</cites><orcidid>0000-0003-4053-8211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-019-00139-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-019-00139-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,782,786,887,27931,27932,28255,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-02351104$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de Carvalho Bento, Glaydston</creatorcontrib><creatorcontrib>Bitar, Sandro Dimy Barbosa</creatorcontrib><creatorcontrib>da Cruz Neto, João Xavier</creatorcontrib><creatorcontrib>Soubeyran, Antoine</creatorcontrib><creatorcontrib>de Oliveira Souza, João Carlos</creatorcontrib><title>A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><addtitle>COMPUT OPTIM APPL</addtitle><description>We consider the constrained multi-objective optimization problem of finding Pareto critical points of difference of convex functions. The new approach proposed by Bento et al. (SIAM J Optim 28:1104–1120, 2018) to study the convergence of the proximal point method is applied. Our method minimizes at each iteration a convex approximation instead of the (non-convex) objective function constrained to a possibly non-convex set which assures the vector improving process. The motivation comes from the famous Group Dynamic problem in Behavioral Sciences where, at each step, a group of (possible badly informed) agents tries to increase his joint payoff, in order to be able to increase the payoff of each of them. In this way, at each step, this ascent process guarantees the stability of the group. Some encouraging preliminary numerical results are reported.</description><subject>Ascent</subject><subject>Convex analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Critical point</subject><subject>Economics and Finance</subject><subject>Goal programming</subject><subject>Group dynamics</subject><subject>Humanities and Social Sciences</subject><subject>Iterative methods</subject><subject>Management Science</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics, Applied</subject><subject>Multiple objective analysis</subject><subject>Operations Research</subject><subject>Operations Research & Management Science</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Statistics</subject><subject>Technology</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkcFu1DAQhi0EEkvpC_RkiRNCgbGdbOzjagUUaSUu7dlyHLvrVWIH29m23HlvnAaVG8KSPdLo-8cz8yN0ReAjAWg_JQINFxWQcoGw8r5AG9K0rKJc1C_RBgTdVlsA9hq9SekEAKJldIN-7fAUw4Mb1YCn4HzGo8nH0GMbIu6dtSYarw0OFuvgz-YB29nr7IJP2Hk8zkN2VehOpuTOBZuyG91PtQD43uUjVtM0OL0mcsB3McwT7h-9Gp1evu4GM6a36JVVQzKXf-IFuv3y-WZ_XR2-f_223x0qzUSbK9vamne6NyXa3tgaFK11I1ouGmU5102vKFONtn3XtVZx09C2F1RTJVhdtnGB3q91j2qQUyxTx0cZlJPXu4NcckBZQwjUZ1LYdytbmvwxm5TlKczRl_YkZYwCbKFlhaIrpWNIKRr7XJaAXKyRqzWyWCOfrJFQRB9W0b3pgk3aLSt-FhZvagGUcljO0gj_f3rv8tOu92H2uUjZKk0F93cm_p3hH-39BizCtTY</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>de Carvalho Bento, Glaydston</creator><creator>Bitar, Sandro Dimy Barbosa</creator><creator>da Cruz Neto, João Xavier</creator><creator>Soubeyran, Antoine</creator><creator>de Oliveira Souza, João Carlos</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4053-8211</orcidid></search><sort><creationdate>2020</creationdate><title>A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems</title><author>de Carvalho Bento, Glaydston ; Bitar, Sandro Dimy Barbosa ; da Cruz Neto, João Xavier ; Soubeyran, Antoine ; de Oliveira Souza, João Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-f7f48bcde7f4fdef40a24c597895af88c5da23a5cfdbb7fa8e527d92c2a934573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ascent</topic><topic>Convex analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Critical point</topic><topic>Economics and Finance</topic><topic>Goal programming</topic><topic>Group dynamics</topic><topic>Humanities and Social Sciences</topic><topic>Iterative methods</topic><topic>Management Science</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics, Applied</topic><topic>Multiple objective analysis</topic><topic>Operations Research</topic><topic>Operations Research & Management Science</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Statistics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Carvalho Bento, Glaydston</creatorcontrib><creatorcontrib>Bitar, Sandro Dimy Barbosa</creatorcontrib><creatorcontrib>da Cruz Neto, João Xavier</creatorcontrib><creatorcontrib>Soubeyran, Antoine</creatorcontrib><creatorcontrib>de Oliveira Souza, João Carlos</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Carvalho Bento, Glaydston</au><au>Bitar, Sandro Dimy Barbosa</au><au>da Cruz Neto, João Xavier</au><au>Soubeyran, Antoine</au><au>de Oliveira Souza, João Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><stitle>COMPUT OPTIM APPL</stitle><date>2020</date><risdate>2020</risdate><volume>75</volume><issue>1</issue><spage>263</spage><epage>290</epage><pages>263-290</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>We consider the constrained multi-objective optimization problem of finding Pareto critical points of difference of convex functions. The new approach proposed by Bento et al. (SIAM J Optim 28:1104–1120, 2018) to study the convergence of the proximal point method is applied. Our method minimizes at each iteration a convex approximation instead of the (non-convex) objective function constrained to a possibly non-convex set which assures the vector improving process. The motivation comes from the famous Group Dynamic problem in Behavioral Sciences where, at each step, a group of (possible badly informed) agents tries to increase his joint payoff, in order to be able to increase the payoff of each of them. In this way, at each step, this ascent process guarantees the stability of the group. Some encouraging preliminary numerical results are reported.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-019-00139-0</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-4053-8211</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-6003 |
ispartof | Computational optimization and applications, 2020, Vol.75 (1), p.263-290 |
issn | 0926-6003 1573-2894 |
language | eng |
recordid | cdi_proquest_journals_2332006073 |
source | Business Source Complete; SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Ascent Convex analysis Convex and Discrete Geometry Critical point Economics and Finance Goal programming Group dynamics Humanities and Social Sciences Iterative methods Management Science Mathematical analysis Mathematics Mathematics and Statistics Mathematics, Applied Multiple objective analysis Operations Research Operations Research & Management Science Operations Research/Decision Theory Optimization Pareto optimization Physical Sciences Science & Technology Statistics Technology |
title | A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T10%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20proximal%20point%20method%20for%20difference%20of%20convex%20functions%20in%20multi-objective%20optimization%20with%20application%20to%20group%20dynamic%20problems&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=de%20Carvalho%20Bento,%20Glaydston&rft.date=2020&rft.volume=75&rft.issue=1&rft.spage=263&rft.epage=290&rft.pages=263-290&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-019-00139-0&rft_dat=%3Cproquest_cross%3E2332006073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332006073&rft_id=info:pmid/&rfr_iscdi=true |