Different contributions of Arctic sea ice anomalies from different regions to North China summer ozone pollution
Surface ozone pollution is the main form of summer air pollution in North China and damages human and ecosystem health. Long‐term meteorological observations show that late spring Arctic sea ice and ozone‐related meteorological conditions are positively correlated; this result was further verified b...
Gespeichert in:
Veröffentlicht in: | International journal of climatology 2020-01, Vol.40 (1), p.559-571 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 571 |
---|---|
container_issue | 1 |
container_start_page | 559 |
container_title | International journal of climatology |
container_volume | 40 |
creator | Yin, Zhicong Yuan, Dongmin Zhang, Xinyu Yang, Quan Xia, Shuwei |
description | Surface ozone pollution is the main form of summer air pollution in North China and damages human and ecosystem health. Long‐term meteorological observations show that late spring Arctic sea ice and ozone‐related meteorological conditions are positively correlated; this result was further verified by numerical experiments. The Eurasia teleconnection pattern bridged the sea ice over Gakkel Ridge to the local meteorological conditions associated with O3. The sea ice anomalies over the Canada Basin and the Beaufort Sea mainly influenced the O3 pollution in North China via the summer west Pacific pattern. Furthermore, changes in the relationships were also included. The anticyclonic circulation over North China, that is, the joint centre of the Eurasia teleconnection and west Pacific patterns, could significantly lead to suitable weather conditions to accelerate the photochemical reactions to transfer the precursors to surface ozone. This finding helps to improve the understanding of the interannual variation in ozone pollution in North China.
(a) Histogram of JJA mean MDA8 (red solid), OWI (black hollow), 10‐m meridional wind (red hollow), DT (blue hollow), and boundary layer height (green hollow) from 2015 to 2017. (b) Scatter diagram of MDA8 and daily precipitation. |
doi_str_mv | 10.1002/joc.6228 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2331876215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331876215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-cbb6f91d76bd88b28f36c8c93e07357830f0d96e07dd2e0023dfa226810637c73</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKvgTwh48bJ1kthscizrN8Ve9Lxks4lN2U3WZBepv95tK948DQPP8w7zInRJYEYA6M0m6BmnVByhCQGZZwBCHKMJCCkzcUvEKTpLaQMAUhI-Qd2ds9ZE43usg--jq4beBZ9wsHgRde80TkZhpw1WPrSqcSZhG0OL6z8xmo-90gf8GmK_xsXaeYXT0LYm4vAdvMFdaJp98jk6sapJ5uJ3TtH7w_1b8ZQtV4_PxWKZaSqZyHRVcStJnfOqFqKiwjKuhZbMQM7muWBgoZZ83OqamvFxVltFKRcEOMt1zqbo6pDbxfA5mNSXmzBEP54sKWNE5JyS-UhdHygdQ0rR2LKLrlVxWxIod32Oli53fY5odkC_XGO2_3Lly6rY8z_e13eW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331876215</pqid></control><display><type>article</type><title>Different contributions of Arctic sea ice anomalies from different regions to North China summer ozone pollution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yin, Zhicong ; Yuan, Dongmin ; Zhang, Xinyu ; Yang, Quan ; Xia, Shuwei</creator><creatorcontrib>Yin, Zhicong ; Yuan, Dongmin ; Zhang, Xinyu ; Yang, Quan ; Xia, Shuwei</creatorcontrib><description>Surface ozone pollution is the main form of summer air pollution in North China and damages human and ecosystem health. Long‐term meteorological observations show that late spring Arctic sea ice and ozone‐related meteorological conditions are positively correlated; this result was further verified by numerical experiments. The Eurasia teleconnection pattern bridged the sea ice over Gakkel Ridge to the local meteorological conditions associated with O3. The sea ice anomalies over the Canada Basin and the Beaufort Sea mainly influenced the O3 pollution in North China via the summer west Pacific pattern. Furthermore, changes in the relationships were also included. The anticyclonic circulation over North China, that is, the joint centre of the Eurasia teleconnection and west Pacific patterns, could significantly lead to suitable weather conditions to accelerate the photochemical reactions to transfer the precursors to surface ozone. This finding helps to improve the understanding of the interannual variation in ozone pollution in North China.
(a) Histogram of JJA mean MDA8 (red solid), OWI (black hollow), 10‐m meridional wind (red hollow), DT (blue hollow), and boundary layer height (green hollow) from 2015 to 2017. (b) Scatter diagram of MDA8 and daily precipitation.</description><identifier>ISSN: 0899-8418</identifier><identifier>EISSN: 1097-0088</identifier><identifier>DOI: 10.1002/joc.6228</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Air pollution ; Annual variations ; Anomalies ; Anticyclonic circulation ; Arctic sea ice ; Environmental changes ; Eurasia teleconnection ; Ice environments ; Interannual variability ; Meteorological conditions ; Meteorological observations ; Numerical experiments ; Ozone ; ozone pollution ; photochemical reaction ; Photochemical reactions ; Photochemicals ; Photochemistry ; Polar environments ; Pollution ; Sea ice ; Sea ice anomalies ; Summer ; Teleconnection patterns ; Teleconnections ; Weather ; Weather conditions ; west Pacific pattern</subject><ispartof>International journal of climatology, 2020-01, Vol.40 (1), p.559-571</ispartof><rights>2019 Royal Meteorological Society</rights><rights>2020 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-cbb6f91d76bd88b28f36c8c93e07357830f0d96e07dd2e0023dfa226810637c73</citedby><cites>FETCH-LOGICAL-c2938-cbb6f91d76bd88b28f36c8c93e07357830f0d96e07dd2e0023dfa226810637c73</cites><orcidid>0000-0002-4104-1509 ; 0000-0002-1727-0790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjoc.6228$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjoc.6228$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yin, Zhicong</creatorcontrib><creatorcontrib>Yuan, Dongmin</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Yang, Quan</creatorcontrib><creatorcontrib>Xia, Shuwei</creatorcontrib><title>Different contributions of Arctic sea ice anomalies from different regions to North China summer ozone pollution</title><title>International journal of climatology</title><description>Surface ozone pollution is the main form of summer air pollution in North China and damages human and ecosystem health. Long‐term meteorological observations show that late spring Arctic sea ice and ozone‐related meteorological conditions are positively correlated; this result was further verified by numerical experiments. The Eurasia teleconnection pattern bridged the sea ice over Gakkel Ridge to the local meteorological conditions associated with O3. The sea ice anomalies over the Canada Basin and the Beaufort Sea mainly influenced the O3 pollution in North China via the summer west Pacific pattern. Furthermore, changes in the relationships were also included. The anticyclonic circulation over North China, that is, the joint centre of the Eurasia teleconnection and west Pacific patterns, could significantly lead to suitable weather conditions to accelerate the photochemical reactions to transfer the precursors to surface ozone. This finding helps to improve the understanding of the interannual variation in ozone pollution in North China.
(a) Histogram of JJA mean MDA8 (red solid), OWI (black hollow), 10‐m meridional wind (red hollow), DT (blue hollow), and boundary layer height (green hollow) from 2015 to 2017. (b) Scatter diagram of MDA8 and daily precipitation.</description><subject>Air pollution</subject><subject>Annual variations</subject><subject>Anomalies</subject><subject>Anticyclonic circulation</subject><subject>Arctic sea ice</subject><subject>Environmental changes</subject><subject>Eurasia teleconnection</subject><subject>Ice environments</subject><subject>Interannual variability</subject><subject>Meteorological conditions</subject><subject>Meteorological observations</subject><subject>Numerical experiments</subject><subject>Ozone</subject><subject>ozone pollution</subject><subject>photochemical reaction</subject><subject>Photochemical reactions</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Polar environments</subject><subject>Pollution</subject><subject>Sea ice</subject><subject>Sea ice anomalies</subject><subject>Summer</subject><subject>Teleconnection patterns</subject><subject>Teleconnections</subject><subject>Weather</subject><subject>Weather conditions</subject><subject>west Pacific pattern</subject><issn>0899-8418</issn><issn>1097-0088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKvgTwh48bJ1kthscizrN8Ve9Lxks4lN2U3WZBepv95tK948DQPP8w7zInRJYEYA6M0m6BmnVByhCQGZZwBCHKMJCCkzcUvEKTpLaQMAUhI-Qd2ds9ZE43usg--jq4beBZ9wsHgRde80TkZhpw1WPrSqcSZhG0OL6z8xmo-90gf8GmK_xsXaeYXT0LYm4vAdvMFdaJp98jk6sapJ5uJ3TtH7w_1b8ZQtV4_PxWKZaSqZyHRVcStJnfOqFqKiwjKuhZbMQM7muWBgoZZ83OqamvFxVltFKRcEOMt1zqbo6pDbxfA5mNSXmzBEP54sKWNE5JyS-UhdHygdQ0rR2LKLrlVxWxIod32Oli53fY5odkC_XGO2_3Lly6rY8z_e13eW</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Yin, Zhicong</creator><creator>Yuan, Dongmin</creator><creator>Zhang, Xinyu</creator><creator>Yang, Quan</creator><creator>Xia, Shuwei</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-4104-1509</orcidid><orcidid>https://orcid.org/0000-0002-1727-0790</orcidid></search><sort><creationdate>202001</creationdate><title>Different contributions of Arctic sea ice anomalies from different regions to North China summer ozone pollution</title><author>Yin, Zhicong ; Yuan, Dongmin ; Zhang, Xinyu ; Yang, Quan ; Xia, Shuwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-cbb6f91d76bd88b28f36c8c93e07357830f0d96e07dd2e0023dfa226810637c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air pollution</topic><topic>Annual variations</topic><topic>Anomalies</topic><topic>Anticyclonic circulation</topic><topic>Arctic sea ice</topic><topic>Environmental changes</topic><topic>Eurasia teleconnection</topic><topic>Ice environments</topic><topic>Interannual variability</topic><topic>Meteorological conditions</topic><topic>Meteorological observations</topic><topic>Numerical experiments</topic><topic>Ozone</topic><topic>ozone pollution</topic><topic>photochemical reaction</topic><topic>Photochemical reactions</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Polar environments</topic><topic>Pollution</topic><topic>Sea ice</topic><topic>Sea ice anomalies</topic><topic>Summer</topic><topic>Teleconnection patterns</topic><topic>Teleconnections</topic><topic>Weather</topic><topic>Weather conditions</topic><topic>west Pacific pattern</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Zhicong</creatorcontrib><creatorcontrib>Yuan, Dongmin</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Yang, Quan</creatorcontrib><creatorcontrib>Xia, Shuwei</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal of climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Zhicong</au><au>Yuan, Dongmin</au><au>Zhang, Xinyu</au><au>Yang, Quan</au><au>Xia, Shuwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different contributions of Arctic sea ice anomalies from different regions to North China summer ozone pollution</atitle><jtitle>International journal of climatology</jtitle><date>2020-01</date><risdate>2020</risdate><volume>40</volume><issue>1</issue><spage>559</spage><epage>571</epage><pages>559-571</pages><issn>0899-8418</issn><eissn>1097-0088</eissn><abstract>Surface ozone pollution is the main form of summer air pollution in North China and damages human and ecosystem health. Long‐term meteorological observations show that late spring Arctic sea ice and ozone‐related meteorological conditions are positively correlated; this result was further verified by numerical experiments. The Eurasia teleconnection pattern bridged the sea ice over Gakkel Ridge to the local meteorological conditions associated with O3. The sea ice anomalies over the Canada Basin and the Beaufort Sea mainly influenced the O3 pollution in North China via the summer west Pacific pattern. Furthermore, changes in the relationships were also included. The anticyclonic circulation over North China, that is, the joint centre of the Eurasia teleconnection and west Pacific patterns, could significantly lead to suitable weather conditions to accelerate the photochemical reactions to transfer the precursors to surface ozone. This finding helps to improve the understanding of the interannual variation in ozone pollution in North China.
(a) Histogram of JJA mean MDA8 (red solid), OWI (black hollow), 10‐m meridional wind (red hollow), DT (blue hollow), and boundary layer height (green hollow) from 2015 to 2017. (b) Scatter diagram of MDA8 and daily precipitation.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/joc.6228</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4104-1509</orcidid><orcidid>https://orcid.org/0000-0002-1727-0790</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-8418 |
ispartof | International journal of climatology, 2020-01, Vol.40 (1), p.559-571 |
issn | 0899-8418 1097-0088 |
language | eng |
recordid | cdi_proquest_journals_2331876215 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Air pollution Annual variations Anomalies Anticyclonic circulation Arctic sea ice Environmental changes Eurasia teleconnection Ice environments Interannual variability Meteorological conditions Meteorological observations Numerical experiments Ozone ozone pollution photochemical reaction Photochemical reactions Photochemicals Photochemistry Polar environments Pollution Sea ice Sea ice anomalies Summer Teleconnection patterns Teleconnections Weather Weather conditions west Pacific pattern |
title | Different contributions of Arctic sea ice anomalies from different regions to North China summer ozone pollution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20contributions%20of%20Arctic%20sea%20ice%20anomalies%20from%20different%20regions%20to%20North%20China%20summer%20ozone%20pollution&rft.jtitle=International%20journal%20of%20climatology&rft.au=Yin,%20Zhicong&rft.date=2020-01&rft.volume=40&rft.issue=1&rft.spage=559&rft.epage=571&rft.pages=559-571&rft.issn=0899-8418&rft.eissn=1097-0088&rft_id=info:doi/10.1002/joc.6228&rft_dat=%3Cproquest_cross%3E2331876215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331876215&rft_id=info:pmid/&rfr_iscdi=true |