A Proposal of Data Dependence-Based Metrics for Evaluating Fault Injection Risk
This paper proposes metrics for evaluating the risk of fault injection through a code change. The proposed metrics focus on the data dependence via variables and quantify the extent to which the code change would influence. The empirical study using 7 open source projects shows that the proposed met...
Gespeichert in:
Veröffentlicht in: | Computer Software 2019/10/25, Vol.36(4), pp.4_32-4_38 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4_38 |
---|---|
container_issue | 4 |
container_start_page | 4_32 |
container_title | Computer Software |
container_volume | 36 |
creator | KAWAKAMI, Takuya AMAN, Hirohisa KAWAHARA, Minoru |
description | This paper proposes metrics for evaluating the risk of fault injection through a code change. The proposed metrics focus on the data dependence via variables and quantify the extent to which the code change would influence. The empirical study using 7 open source projects shows that the proposed metrics are useful explanatory variables together with conventional metrics in random forest models to predict fault injection commits. |
doi_str_mv | 10.11309/jssst.36.4_32 |
format | Article |
fullrecord | <record><control><sourceid>proquest_jstag</sourceid><recordid>TN_cdi_proquest_journals_2331823943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331823943</sourcerecordid><originalsourceid>FETCH-LOGICAL-j155t-a093784b1843429c95d2a18d0045873f6a5349aa42c4856893b33ed0709870283</originalsourceid><addsrcrecordid>eNo9UD1PwzAU9AASVenKbIk5xfazE3uj9ItKRUUIZus1cUpCSILtIPHvqWjFcjfc6U53hNxwNuUcmLmrQwhxCulUWhAXZMSENkmqJLsikxCqPWPMpFzJdER2M_rsu74L2NCupAuMSBeud23h2twlDxhcQZ9c9FUeaNl5uvzGZsBYtQe6wqGJdNPWLo9V19KXKnxck8sSm-AmZx6Tt9Xydf6YbHfrzXy2TWquVEyQGci03HMtQQqTG1UI5LpgTCqdQZmiAmkQpcilVqk2sAdwBcuY0dlxDozJ7Sm3993X4EK0dTf49lhpBQDXAoyEo-v-5KpDxIOzva8-0f9Y9LHKG2f_jrKQWnkG8S_l7-ita-EX7SBlWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331823943</pqid></control><display><type>article</type><title>A Proposal of Data Dependence-Based Metrics for Evaluating Fault Injection Risk</title><source>J-STAGE Free</source><creator>KAWAKAMI, Takuya ; AMAN, Hirohisa ; KAWAHARA, Minoru</creator><creatorcontrib>KAWAKAMI, Takuya ; AMAN, Hirohisa ; KAWAHARA, Minoru</creatorcontrib><description>This paper proposes metrics for evaluating the risk of fault injection through a code change. The proposed metrics focus on the data dependence via variables and quantify the extent to which the code change would influence. The empirical study using 7 open source projects shows that the proposed metrics are useful explanatory variables together with conventional metrics in random forest models to predict fault injection commits.</description><identifier>ISSN: 0289-6540</identifier><identifier>DOI: 10.11309/jssst.36.4_32</identifier><language>jpn</language><publisher>Tokyo: Japan Society for Software Science and Technology</publisher><subject>Dependence ; Risk assessment</subject><ispartof>Computer Software, 2019/10/25, Vol.36(4), pp.4_32-4_38</ispartof><rights>2019, Japan Society for Software Science and Technology</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>KAWAKAMI, Takuya</creatorcontrib><creatorcontrib>AMAN, Hirohisa</creatorcontrib><creatorcontrib>KAWAHARA, Minoru</creatorcontrib><title>A Proposal of Data Dependence-Based Metrics for Evaluating Fault Injection Risk</title><title>Computer Software</title><addtitle>Computer Software</addtitle><description>This paper proposes metrics for evaluating the risk of fault injection through a code change. The proposed metrics focus on the data dependence via variables and quantify the extent to which the code change would influence. The empirical study using 7 open source projects shows that the proposed metrics are useful explanatory variables together with conventional metrics in random forest models to predict fault injection commits.</description><subject>Dependence</subject><subject>Risk assessment</subject><issn>0289-6540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UD1PwzAU9AASVenKbIk5xfazE3uj9ItKRUUIZus1cUpCSILtIPHvqWjFcjfc6U53hNxwNuUcmLmrQwhxCulUWhAXZMSENkmqJLsikxCqPWPMpFzJdER2M_rsu74L2NCupAuMSBeud23h2twlDxhcQZ9c9FUeaNl5uvzGZsBYtQe6wqGJdNPWLo9V19KXKnxck8sSm-AmZx6Tt9Xydf6YbHfrzXy2TWquVEyQGci03HMtQQqTG1UI5LpgTCqdQZmiAmkQpcilVqk2sAdwBcuY0dlxDozJ7Sm3993X4EK0dTf49lhpBQDXAoyEo-v-5KpDxIOzva8-0f9Y9LHKG2f_jrKQWnkG8S_l7-ita-EX7SBlWQ</recordid><startdate>20191025</startdate><enddate>20191025</enddate><creator>KAWAKAMI, Takuya</creator><creator>AMAN, Hirohisa</creator><creator>KAWAHARA, Minoru</creator><general>Japan Society for Software Science and Technology</general><general>Japan Science and Technology Agency</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20191025</creationdate><title>A Proposal of Data Dependence-Based Metrics for Evaluating Fault Injection Risk</title><author>KAWAKAMI, Takuya ; AMAN, Hirohisa ; KAWAHARA, Minoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j155t-a093784b1843429c95d2a18d0045873f6a5349aa42c4856893b33ed0709870283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2019</creationdate><topic>Dependence</topic><topic>Risk assessment</topic><toplevel>online_resources</toplevel><creatorcontrib>KAWAKAMI, Takuya</creatorcontrib><creatorcontrib>AMAN, Hirohisa</creatorcontrib><creatorcontrib>KAWAHARA, Minoru</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer Software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KAWAKAMI, Takuya</au><au>AMAN, Hirohisa</au><au>KAWAHARA, Minoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Proposal of Data Dependence-Based Metrics for Evaluating Fault Injection Risk</atitle><jtitle>Computer Software</jtitle><addtitle>Computer Software</addtitle><date>2019-10-25</date><risdate>2019</risdate><volume>36</volume><issue>4</issue><spage>4_32</spage><epage>4_38</epage><pages>4_32-4_38</pages><issn>0289-6540</issn><abstract>This paper proposes metrics for evaluating the risk of fault injection through a code change. The proposed metrics focus on the data dependence via variables and quantify the extent to which the code change would influence. The empirical study using 7 open source projects shows that the proposed metrics are useful explanatory variables together with conventional metrics in random forest models to predict fault injection commits.</abstract><cop>Tokyo</cop><pub>Japan Society for Software Science and Technology</pub><doi>10.11309/jssst.36.4_32</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0289-6540 |
ispartof | Computer Software, 2019/10/25, Vol.36(4), pp.4_32-4_38 |
issn | 0289-6540 |
language | jpn |
recordid | cdi_proquest_journals_2331823943 |
source | J-STAGE Free |
subjects | Dependence Risk assessment |
title | A Proposal of Data Dependence-Based Metrics for Evaluating Fault Injection Risk |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_jstag&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Proposal%20of%20Data%20Dependence-Based%20Metrics%20for%20Evaluating%20Fault%20Injection%20Risk&rft.jtitle=Computer%20Software&rft.au=KAWAKAMI,%20Takuya&rft.date=2019-10-25&rft.volume=36&rft.issue=4&rft.spage=4_32&rft.epage=4_38&rft.pages=4_32-4_38&rft.issn=0289-6540&rft_id=info:doi/10.11309/jssst.36.4_32&rft_dat=%3Cproquest_jstag%3E2331823943%3C/proquest_jstag%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331823943&rft_id=info:pmid/&rfr_iscdi=true |