Patterns and dynamics of 32P-phosphate and labelled 2-aminoisobutyric acid (14C-AIB) translocation in intact basidiomycete mycelia

Following uptake of 32P-orthophosphate and 14C-aminoisobutyric acid (14C-AIB) the patterns of distribution of the isotopes through intact basidiomycete mycelia were non-destructively mapped at regular intervals using a beta-scanner. Analysis of the results suggests that translocation of 32P and 14C-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS microbiology ecology 1998-06, Vol.26 (2), p.109-120
Hauptverfasser: Olsson, S, Gray, S.N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120
container_issue 2
container_start_page 109
container_title FEMS microbiology ecology
container_volume 26
creator Olsson, S
Gray, S.N
description Following uptake of 32P-orthophosphate and 14C-aminoisobutyric acid (14C-AIB) the patterns of distribution of the isotopes through intact basidiomycete mycelia were non-destructively mapped at regular intervals using a beta-scanner. Analysis of the results suggests that translocation of 32P and 14C-AIB through mycelia of Pleurotus ostreatus and Schizophyllum commune occurred along a restricted number of clearly defined, but macroscopically invisible, routes through the mycelium. In contrast to this, 32P added to mycelia of Coprinus cinereus remained immobilised at the addition point. Simultaneous acropetal and basipetal translocation of 32P and 14C-AIB was observed in different regions of colonies of P. ostreatus and S. commune. Translocation of label around the periphery of colonies strongly suggested the existence of anastomoses around the colony margin. Both 32P and 14C-AIB were initially immobilised at the addition point, from which each was subsequently translocated to other parts of the mycelium. The observed translocation of nutrients could not be explained by simple diffusion alone. The velocity of translocation and the complexity of the translocation pattern of 32P were greatest in mycelia of P. ostreatus, a hardwood decomposer, followed by S. commune, a wood and litter decomposer and parasite. Translocation through mycelia of C. cinereus, a coprophilus saprophyte, was very slow. This study provides the first detailed description of nutrient translocation through intact, entire fungal mycelia over time.
doi_str_mv 10.1111/j.1574-6941.1998.tb00497.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2331820790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1574-6941.1998.tb00497.x</oup_id><sourcerecordid>2331820790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3429-9c2e7394b5e59dc977d0912b46eb82c35d8089a24eea3fb82adce9c64888ad853</originalsourceid><addsrcrecordid>eNqVkE2L1TAUhosoeB39DQZ1oYvWfLVNXAjjZb5gxAGddThNUieX3qYmuTjd-stN7WVWujAEDpzzvu85PEXxiuCK5Pd-V5G65WUjOamIlKJKHcZcttX9o2LzMHpcbDBpRNlw2TwtnsW4w5jUjONN8esGUrJhjAhGg8w8wt7piHyPGL0ppzsfpztI9s90gM4OgzWIllk1ehd9d0hzcBqBdga9JXxbnl59eodSgDEOXkNyfkRu-Ql0Qh1EZ5zfz9rmzKUMDp4XT3oYon1xrCfF7fnZt-1lef3l4mp7el1qxqkspaa2ZZJ3ta2l0bJtDZaEdryxnaCa1UZgIYFya4H1uQVGW6kbLoQAI2p2Urxec6fgfxxsTGrnD2HMKxVljAiKW4mz6sOq0sHHGGyvpuD2EGZFsFqYq51awKoFrFqYqyNzdZ_Nb44rIGoY-oxBu_iQQBnn2ZBlH1fZTzfY-T8WqPOzzwTLHFCvAf4w_cNe_v2-l6uvB6_ge8i33X6lmDBMhaRSUPYbfiCvsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331820790</pqid></control><display><type>article</type><title>Patterns and dynamics of 32P-phosphate and labelled 2-aminoisobutyric acid (14C-AIB) translocation in intact basidiomycete mycelia</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Olsson, S ; Gray, S.N</creator><creatorcontrib>Olsson, S ; Gray, S.N</creatorcontrib><description>Following uptake of 32P-orthophosphate and 14C-aminoisobutyric acid (14C-AIB) the patterns of distribution of the isotopes through intact basidiomycete mycelia were non-destructively mapped at regular intervals using a beta-scanner. Analysis of the results suggests that translocation of 32P and 14C-AIB through mycelia of Pleurotus ostreatus and Schizophyllum commune occurred along a restricted number of clearly defined, but macroscopically invisible, routes through the mycelium. In contrast to this, 32P added to mycelia of Coprinus cinereus remained immobilised at the addition point. Simultaneous acropetal and basipetal translocation of 32P and 14C-AIB was observed in different regions of colonies of P. ostreatus and S. commune. Translocation of label around the periphery of colonies strongly suggested the existence of anastomoses around the colony margin. Both 32P and 14C-AIB were initially immobilised at the addition point, from which each was subsequently translocated to other parts of the mycelium. The observed translocation of nutrients could not be explained by simple diffusion alone. The velocity of translocation and the complexity of the translocation pattern of 32P were greatest in mycelia of P. ostreatus, a hardwood decomposer, followed by S. commune, a wood and litter decomposer and parasite. Translocation through mycelia of C. cinereus, a coprophilus saprophyte, was very slow. This study provides the first detailed description of nutrient translocation through intact, entire fungal mycelia over time.</description><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1111/j.1574-6941.1998.tb00497.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Biological and medical sciences ; Colonies ; Coprinus cinereus ; decay fungi ; Decomposition ; Ecology ; Fundamental and applied biological sciences. Psychology ; Fungal mycelium ; Growth, nutrition, metabolism, transports, enzymes. Molecular biology ; Hardwoods ; Isotopes ; Microbiology ; Mycelia ; mycelium ; Mycology ; Nutrient relocation ; Nutrient translocation ; Nutrients ; Orthophosphate ; Parasites ; Plant physiology and development ; Pleurotus ostreatus ; saprotrophic basidiomycotina ; Schizophyllum commune ; soil fungi ; Translocation ; Water and solutes. Absorption, translocation and permeability</subject><ispartof>FEMS microbiology ecology, 1998-06, Vol.26 (2), p.109-120</ispartof><rights>1998 Published by Elsevier Science B.V. All rights reserved. 1998</rights><rights>1998 INIST-CNRS</rights><rights>1998 Published by Elsevier Science B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3429-9c2e7394b5e59dc977d0912b46eb82c35d8089a24eea3fb82adce9c64888ad853</citedby><cites>FETCH-LOGICAL-c3429-9c2e7394b5e59dc977d0912b46eb82c35d8089a24eea3fb82adce9c64888ad853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1574-6941.1998.tb00497.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1574-6941.1998.tb00497.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2344998$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Olsson, S</creatorcontrib><creatorcontrib>Gray, S.N</creatorcontrib><title>Patterns and dynamics of 32P-phosphate and labelled 2-aminoisobutyric acid (14C-AIB) translocation in intact basidiomycete mycelia</title><title>FEMS microbiology ecology</title><description>Following uptake of 32P-orthophosphate and 14C-aminoisobutyric acid (14C-AIB) the patterns of distribution of the isotopes through intact basidiomycete mycelia were non-destructively mapped at regular intervals using a beta-scanner. Analysis of the results suggests that translocation of 32P and 14C-AIB through mycelia of Pleurotus ostreatus and Schizophyllum commune occurred along a restricted number of clearly defined, but macroscopically invisible, routes through the mycelium. In contrast to this, 32P added to mycelia of Coprinus cinereus remained immobilised at the addition point. Simultaneous acropetal and basipetal translocation of 32P and 14C-AIB was observed in different regions of colonies of P. ostreatus and S. commune. Translocation of label around the periphery of colonies strongly suggested the existence of anastomoses around the colony margin. Both 32P and 14C-AIB were initially immobilised at the addition point, from which each was subsequently translocated to other parts of the mycelium. The observed translocation of nutrients could not be explained by simple diffusion alone. The velocity of translocation and the complexity of the translocation pattern of 32P were greatest in mycelia of P. ostreatus, a hardwood decomposer, followed by S. commune, a wood and litter decomposer and parasite. Translocation through mycelia of C. cinereus, a coprophilus saprophyte, was very slow. This study provides the first detailed description of nutrient translocation through intact, entire fungal mycelia over time.</description><subject>Biological and medical sciences</subject><subject>Colonies</subject><subject>Coprinus cinereus</subject><subject>decay fungi</subject><subject>Decomposition</subject><subject>Ecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal mycelium</subject><subject>Growth, nutrition, metabolism, transports, enzymes. Molecular biology</subject><subject>Hardwoods</subject><subject>Isotopes</subject><subject>Microbiology</subject><subject>Mycelia</subject><subject>mycelium</subject><subject>Mycology</subject><subject>Nutrient relocation</subject><subject>Nutrient translocation</subject><subject>Nutrients</subject><subject>Orthophosphate</subject><subject>Parasites</subject><subject>Plant physiology and development</subject><subject>Pleurotus ostreatus</subject><subject>saprotrophic basidiomycotina</subject><subject>Schizophyllum commune</subject><subject>soil fungi</subject><subject>Translocation</subject><subject>Water and solutes. Absorption, translocation and permeability</subject><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqVkE2L1TAUhosoeB39DQZ1oYvWfLVNXAjjZb5gxAGddThNUieX3qYmuTjd-stN7WVWujAEDpzzvu85PEXxiuCK5Pd-V5G65WUjOamIlKJKHcZcttX9o2LzMHpcbDBpRNlw2TwtnsW4w5jUjONN8esGUrJhjAhGg8w8wt7piHyPGL0ppzsfpztI9s90gM4OgzWIllk1ehd9d0hzcBqBdga9JXxbnl59eodSgDEOXkNyfkRu-Ql0Qh1EZ5zfz9rmzKUMDp4XT3oYon1xrCfF7fnZt-1lef3l4mp7el1qxqkspaa2ZZJ3ta2l0bJtDZaEdryxnaCa1UZgIYFya4H1uQVGW6kbLoQAI2p2Urxec6fgfxxsTGrnD2HMKxVljAiKW4mz6sOq0sHHGGyvpuD2EGZFsFqYq51awKoFrFqYqyNzdZ_Nb44rIGoY-oxBu_iQQBnn2ZBlH1fZTzfY-T8WqPOzzwTLHFCvAf4w_cNe_v2-l6uvB6_ge8i33X6lmDBMhaRSUPYbfiCvsA</recordid><startdate>199806</startdate><enddate>199806</enddate><creator>Olsson, S</creator><creator>Gray, S.N</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope></search><sort><creationdate>199806</creationdate><title>Patterns and dynamics of 32P-phosphate and labelled 2-aminoisobutyric acid (14C-AIB) translocation in intact basidiomycete mycelia</title><author>Olsson, S ; Gray, S.N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3429-9c2e7394b5e59dc977d0912b46eb82c35d8089a24eea3fb82adce9c64888ad853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Biological and medical sciences</topic><topic>Colonies</topic><topic>Coprinus cinereus</topic><topic>decay fungi</topic><topic>Decomposition</topic><topic>Ecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal mycelium</topic><topic>Growth, nutrition, metabolism, transports, enzymes. Molecular biology</topic><topic>Hardwoods</topic><topic>Isotopes</topic><topic>Microbiology</topic><topic>Mycelia</topic><topic>mycelium</topic><topic>Mycology</topic><topic>Nutrient relocation</topic><topic>Nutrient translocation</topic><topic>Nutrients</topic><topic>Orthophosphate</topic><topic>Parasites</topic><topic>Plant physiology and development</topic><topic>Pleurotus ostreatus</topic><topic>saprotrophic basidiomycotina</topic><topic>Schizophyllum commune</topic><topic>soil fungi</topic><topic>Translocation</topic><topic>Water and solutes. Absorption, translocation and permeability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olsson, S</creatorcontrib><creatorcontrib>Gray, S.N</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olsson, S</au><au>Gray, S.N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterns and dynamics of 32P-phosphate and labelled 2-aminoisobutyric acid (14C-AIB) translocation in intact basidiomycete mycelia</atitle><jtitle>FEMS microbiology ecology</jtitle><date>1998-06</date><risdate>1998</risdate><volume>26</volume><issue>2</issue><spage>109</spage><epage>120</epage><pages>109-120</pages><issn>0168-6496</issn><eissn>1574-6941</eissn><abstract>Following uptake of 32P-orthophosphate and 14C-aminoisobutyric acid (14C-AIB) the patterns of distribution of the isotopes through intact basidiomycete mycelia were non-destructively mapped at regular intervals using a beta-scanner. Analysis of the results suggests that translocation of 32P and 14C-AIB through mycelia of Pleurotus ostreatus and Schizophyllum commune occurred along a restricted number of clearly defined, but macroscopically invisible, routes through the mycelium. In contrast to this, 32P added to mycelia of Coprinus cinereus remained immobilised at the addition point. Simultaneous acropetal and basipetal translocation of 32P and 14C-AIB was observed in different regions of colonies of P. ostreatus and S. commune. Translocation of label around the periphery of colonies strongly suggested the existence of anastomoses around the colony margin. Both 32P and 14C-AIB were initially immobilised at the addition point, from which each was subsequently translocated to other parts of the mycelium. The observed translocation of nutrients could not be explained by simple diffusion alone. The velocity of translocation and the complexity of the translocation pattern of 32P were greatest in mycelia of P. ostreatus, a hardwood decomposer, followed by S. commune, a wood and litter decomposer and parasite. Translocation through mycelia of C. cinereus, a coprophilus saprophyte, was very slow. This study provides the first detailed description of nutrient translocation through intact, entire fungal mycelia over time.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1574-6941.1998.tb00497.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-6496
ispartof FEMS microbiology ecology, 1998-06, Vol.26 (2), p.109-120
issn 0168-6496
1574-6941
language eng
recordid cdi_proquest_journals_2331820790
source Oxford Journals Open Access Collection; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Biological and medical sciences
Colonies
Coprinus cinereus
decay fungi
Decomposition
Ecology
Fundamental and applied biological sciences. Psychology
Fungal mycelium
Growth, nutrition, metabolism, transports, enzymes. Molecular biology
Hardwoods
Isotopes
Microbiology
Mycelia
mycelium
Mycology
Nutrient relocation
Nutrient translocation
Nutrients
Orthophosphate
Parasites
Plant physiology and development
Pleurotus ostreatus
saprotrophic basidiomycotina
Schizophyllum commune
soil fungi
Translocation
Water and solutes. Absorption, translocation and permeability
title Patterns and dynamics of 32P-phosphate and labelled 2-aminoisobutyric acid (14C-AIB) translocation in intact basidiomycete mycelia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterns%20and%20dynamics%20of%2032P-phosphate%20and%20labelled%202-aminoisobutyric%20acid%20(14C-AIB)%20translocation%20in%20intact%20basidiomycete%20mycelia&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Olsson,%20S&rft.date=1998-06&rft.volume=26&rft.issue=2&rft.spage=109&rft.epage=120&rft.pages=109-120&rft.issn=0168-6496&rft.eissn=1574-6941&rft_id=info:doi/10.1111/j.1574-6941.1998.tb00497.x&rft_dat=%3Cproquest_cross%3E2331820790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331820790&rft_id=info:pmid/&rft_oup_id=10.1111/j.1574-6941.1998.tb00497.x&rfr_iscdi=true