Spatially resolved NMR spectroscopy of heterogeneous gas phase hydrogenation of 1,3-butadiene with parahydrogen

Magnetic resonance-based methods such as nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are widely used to provide in situ/operando information of chemical reactions. However, the low spin density and magnetic field inhomogeneities associated with heterogeneous catalytic syste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2020-01, Vol.10 (1), p.99-104
Hauptverfasser: Svyatova, Alexandra, Kononenko, Elizaveta S, Kovtunov, Kirill V, Lebedev, Dmitry, Evgeniy Yu Gerasimov, Bukhtiyarov, Andrey V, Prosvirin, Igor P, Bukhtiyarov, Valerii I, Müller, Christoph R, Fedorov, Alexey, Koptyug, Igor V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue 1
container_start_page 99
container_title Catalysis science & technology
container_volume 10
creator Svyatova, Alexandra
Kononenko, Elizaveta S
Kovtunov, Kirill V
Lebedev, Dmitry
Evgeniy Yu Gerasimov
Bukhtiyarov, Andrey V
Prosvirin, Igor P
Bukhtiyarov, Valerii I
Müller, Christoph R
Fedorov, Alexey
Koptyug, Igor V
description Magnetic resonance-based methods such as nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are widely used to provide in situ/operando information of chemical reactions. However, the low spin density and magnetic field inhomogeneities associated with heterogeneous catalytic systems containing gaseous reactants complicate such studies. Hyperpolarization techniques, in particular parahydrogen-induced polarization (PHIP), increase significantly the NMR signal intensity. In this study, we test 16 glass tube reactors containing Pd, Pt, Rh or Ir nanoparticles dispersed on a thin layer of TiO2, CeO2, SiO2 or Al2O3 for the hydrogenation of 1,3-butadiene using parahydrogen. The catalytic coatings of Ir and Rh gave hydrogenation products with the highest nuclear spin polarization while the coatings of Pd are the most selective ones for the semihydrogenation of 1,3-butadiene to 1- and 2-butenes. Spatially resolved NMR spectroscopy of the reagent and the product distribution along the reactor axis provided further mechanistic insight into the catalytic function of these reactive coatings under operando conditions.
doi_str_mv 10.1039/c9cy02100k
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2331814348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331814348</sourcerecordid><originalsourceid>FETCH-LOGICAL-g186t-6e008ae5b7d638a7fc9f5c039c426bde5ff0d08bf0829492c981d814f30811893</originalsourceid><addsrcrecordid>eNo9j0tLxDAUhYMoOIyz8RcE3Fq9adJOspTBF4wKPtZDmtxMO5amNqnSf298ns09HD7O5RByzOCMAVfnRpkJcgbwukdmOQiRiWXJ9v99wQ_JIoQdJAnFQOYz4p96HRvdthMdMPj2HS29v3ukoUcTBx-M7yfqHa0x4uC32KEfA93qQPtaB6T1ZL_jVOK7L5Cd8qwao7ZNYulHE2va60H_cUfkwOk24OL3zsnL1eXz6iZbP1zfri7W2ZbJMmYlAkiNRbW0JZd66YxyhUkjjcjLymLhHFiQlUsjlFC5UZJZyYTjIBmTis_JyU9vP_i3EUPc7Pw4dOnlJuecJZQLyT8BR_Zc2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331814348</pqid></control><display><type>article</type><title>Spatially resolved NMR spectroscopy of heterogeneous gas phase hydrogenation of 1,3-butadiene with parahydrogen</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Svyatova, Alexandra ; Kononenko, Elizaveta S ; Kovtunov, Kirill V ; Lebedev, Dmitry ; Evgeniy Yu Gerasimov ; Bukhtiyarov, Andrey V ; Prosvirin, Igor P ; Bukhtiyarov, Valerii I ; Müller, Christoph R ; Fedorov, Alexey ; Koptyug, Igor V</creator><creatorcontrib>Svyatova, Alexandra ; Kononenko, Elizaveta S ; Kovtunov, Kirill V ; Lebedev, Dmitry ; Evgeniy Yu Gerasimov ; Bukhtiyarov, Andrey V ; Prosvirin, Igor P ; Bukhtiyarov, Valerii I ; Müller, Christoph R ; Fedorov, Alexey ; Koptyug, Igor V</creatorcontrib><description>Magnetic resonance-based methods such as nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are widely used to provide in situ/operando information of chemical reactions. However, the low spin density and magnetic field inhomogeneities associated with heterogeneous catalytic systems containing gaseous reactants complicate such studies. Hyperpolarization techniques, in particular parahydrogen-induced polarization (PHIP), increase significantly the NMR signal intensity. In this study, we test 16 glass tube reactors containing Pd, Pt, Rh or Ir nanoparticles dispersed on a thin layer of TiO2, CeO2, SiO2 or Al2O3 for the hydrogenation of 1,3-butadiene using parahydrogen. The catalytic coatings of Ir and Rh gave hydrogenation products with the highest nuclear spin polarization while the coatings of Pd are the most selective ones for the semihydrogenation of 1,3-butadiene to 1- and 2-butenes. Spatially resolved NMR spectroscopy of the reagent and the product distribution along the reactor axis provided further mechanistic insight into the catalytic function of these reactive coatings under operando conditions.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/c9cy02100k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum oxide ; Butadiene ; Butenes ; Cerium oxides ; Chemical reactions ; Coatings ; Hydrogenation ; Induced polarization ; Iridium ; Magnetic resonance imaging ; Nanoparticles ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Nuclear reactors ; Nuclear spin ; Organic chemistry ; Palladium ; Platinum ; Polarization (spin alignment) ; Reagents ; Rhodium ; Silicon dioxide ; Spectrum analysis ; Titanium dioxide ; Vapor phases</subject><ispartof>Catalysis science &amp; technology, 2020-01, Vol.10 (1), p.99-104</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Svyatova, Alexandra</creatorcontrib><creatorcontrib>Kononenko, Elizaveta S</creatorcontrib><creatorcontrib>Kovtunov, Kirill V</creatorcontrib><creatorcontrib>Lebedev, Dmitry</creatorcontrib><creatorcontrib>Evgeniy Yu Gerasimov</creatorcontrib><creatorcontrib>Bukhtiyarov, Andrey V</creatorcontrib><creatorcontrib>Prosvirin, Igor P</creatorcontrib><creatorcontrib>Bukhtiyarov, Valerii I</creatorcontrib><creatorcontrib>Müller, Christoph R</creatorcontrib><creatorcontrib>Fedorov, Alexey</creatorcontrib><creatorcontrib>Koptyug, Igor V</creatorcontrib><title>Spatially resolved NMR spectroscopy of heterogeneous gas phase hydrogenation of 1,3-butadiene with parahydrogen</title><title>Catalysis science &amp; technology</title><description>Magnetic resonance-based methods such as nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are widely used to provide in situ/operando information of chemical reactions. However, the low spin density and magnetic field inhomogeneities associated with heterogeneous catalytic systems containing gaseous reactants complicate such studies. Hyperpolarization techniques, in particular parahydrogen-induced polarization (PHIP), increase significantly the NMR signal intensity. In this study, we test 16 glass tube reactors containing Pd, Pt, Rh or Ir nanoparticles dispersed on a thin layer of TiO2, CeO2, SiO2 or Al2O3 for the hydrogenation of 1,3-butadiene using parahydrogen. The catalytic coatings of Ir and Rh gave hydrogenation products with the highest nuclear spin polarization while the coatings of Pd are the most selective ones for the semihydrogenation of 1,3-butadiene to 1- and 2-butenes. Spatially resolved NMR spectroscopy of the reagent and the product distribution along the reactor axis provided further mechanistic insight into the catalytic function of these reactive coatings under operando conditions.</description><subject>Aluminum oxide</subject><subject>Butadiene</subject><subject>Butenes</subject><subject>Cerium oxides</subject><subject>Chemical reactions</subject><subject>Coatings</subject><subject>Hydrogenation</subject><subject>Induced polarization</subject><subject>Iridium</subject><subject>Magnetic resonance imaging</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear reactors</subject><subject>Nuclear spin</subject><subject>Organic chemistry</subject><subject>Palladium</subject><subject>Platinum</subject><subject>Polarization (spin alignment)</subject><subject>Reagents</subject><subject>Rhodium</subject><subject>Silicon dioxide</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><subject>Vapor phases</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLxDAUhYMoOIyz8RcE3Fq9adJOspTBF4wKPtZDmtxMO5amNqnSf298ns09HD7O5RByzOCMAVfnRpkJcgbwukdmOQiRiWXJ9v99wQ_JIoQdJAnFQOYz4p96HRvdthMdMPj2HS29v3ukoUcTBx-M7yfqHa0x4uC32KEfA93qQPtaB6T1ZL_jVOK7L5Cd8qwao7ZNYulHE2va60H_cUfkwOk24OL3zsnL1eXz6iZbP1zfri7W2ZbJMmYlAkiNRbW0JZd66YxyhUkjjcjLymLhHFiQlUsjlFC5UZJZyYTjIBmTis_JyU9vP_i3EUPc7Pw4dOnlJuecJZQLyT8BR_Zc2w</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Svyatova, Alexandra</creator><creator>Kononenko, Elizaveta S</creator><creator>Kovtunov, Kirill V</creator><creator>Lebedev, Dmitry</creator><creator>Evgeniy Yu Gerasimov</creator><creator>Bukhtiyarov, Andrey V</creator><creator>Prosvirin, Igor P</creator><creator>Bukhtiyarov, Valerii I</creator><creator>Müller, Christoph R</creator><creator>Fedorov, Alexey</creator><creator>Koptyug, Igor V</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200101</creationdate><title>Spatially resolved NMR spectroscopy of heterogeneous gas phase hydrogenation of 1,3-butadiene with parahydrogen</title><author>Svyatova, Alexandra ; Kononenko, Elizaveta S ; Kovtunov, Kirill V ; Lebedev, Dmitry ; Evgeniy Yu Gerasimov ; Bukhtiyarov, Andrey V ; Prosvirin, Igor P ; Bukhtiyarov, Valerii I ; Müller, Christoph R ; Fedorov, Alexey ; Koptyug, Igor V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g186t-6e008ae5b7d638a7fc9f5c039c426bde5ff0d08bf0829492c981d814f30811893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Butadiene</topic><topic>Butenes</topic><topic>Cerium oxides</topic><topic>Chemical reactions</topic><topic>Coatings</topic><topic>Hydrogenation</topic><topic>Induced polarization</topic><topic>Iridium</topic><topic>Magnetic resonance imaging</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear reactors</topic><topic>Nuclear spin</topic><topic>Organic chemistry</topic><topic>Palladium</topic><topic>Platinum</topic><topic>Polarization (spin alignment)</topic><topic>Reagents</topic><topic>Rhodium</topic><topic>Silicon dioxide</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svyatova, Alexandra</creatorcontrib><creatorcontrib>Kononenko, Elizaveta S</creatorcontrib><creatorcontrib>Kovtunov, Kirill V</creatorcontrib><creatorcontrib>Lebedev, Dmitry</creatorcontrib><creatorcontrib>Evgeniy Yu Gerasimov</creatorcontrib><creatorcontrib>Bukhtiyarov, Andrey V</creatorcontrib><creatorcontrib>Prosvirin, Igor P</creatorcontrib><creatorcontrib>Bukhtiyarov, Valerii I</creatorcontrib><creatorcontrib>Müller, Christoph R</creatorcontrib><creatorcontrib>Fedorov, Alexey</creatorcontrib><creatorcontrib>Koptyug, Igor V</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svyatova, Alexandra</au><au>Kononenko, Elizaveta S</au><au>Kovtunov, Kirill V</au><au>Lebedev, Dmitry</au><au>Evgeniy Yu Gerasimov</au><au>Bukhtiyarov, Andrey V</au><au>Prosvirin, Igor P</au><au>Bukhtiyarov, Valerii I</au><au>Müller, Christoph R</au><au>Fedorov, Alexey</au><au>Koptyug, Igor V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially resolved NMR spectroscopy of heterogeneous gas phase hydrogenation of 1,3-butadiene with parahydrogen</atitle><jtitle>Catalysis science &amp; technology</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>99</spage><epage>104</epage><pages>99-104</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>Magnetic resonance-based methods such as nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are widely used to provide in situ/operando information of chemical reactions. However, the low spin density and magnetic field inhomogeneities associated with heterogeneous catalytic systems containing gaseous reactants complicate such studies. Hyperpolarization techniques, in particular parahydrogen-induced polarization (PHIP), increase significantly the NMR signal intensity. In this study, we test 16 glass tube reactors containing Pd, Pt, Rh or Ir nanoparticles dispersed on a thin layer of TiO2, CeO2, SiO2 or Al2O3 for the hydrogenation of 1,3-butadiene using parahydrogen. The catalytic coatings of Ir and Rh gave hydrogenation products with the highest nuclear spin polarization while the coatings of Pd are the most selective ones for the semihydrogenation of 1,3-butadiene to 1- and 2-butenes. Spatially resolved NMR spectroscopy of the reagent and the product distribution along the reactor axis provided further mechanistic insight into the catalytic function of these reactive coatings under operando conditions.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cy02100k</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2020-01, Vol.10 (1), p.99-104
issn 2044-4753
2044-4761
language eng
recordid cdi_proquest_journals_2331814348
source Royal Society Of Chemistry Journals 2008-
subjects Aluminum oxide
Butadiene
Butenes
Cerium oxides
Chemical reactions
Coatings
Hydrogenation
Induced polarization
Iridium
Magnetic resonance imaging
Nanoparticles
NMR
NMR spectroscopy
Nuclear magnetic resonance
Nuclear reactors
Nuclear spin
Organic chemistry
Palladium
Platinum
Polarization (spin alignment)
Reagents
Rhodium
Silicon dioxide
Spectrum analysis
Titanium dioxide
Vapor phases
title Spatially resolved NMR spectroscopy of heterogeneous gas phase hydrogenation of 1,3-butadiene with parahydrogen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20resolved%20NMR%20spectroscopy%20of%20heterogeneous%20gas%20phase%20hydrogenation%20of%201,3-butadiene%20with%20parahydrogen&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Svyatova,%20Alexandra&rft.date=2020-01-01&rft.volume=10&rft.issue=1&rft.spage=99&rft.epage=104&rft.pages=99-104&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/c9cy02100k&rft_dat=%3Cproquest%3E2331814348%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331814348&rft_id=info:pmid/&rfr_iscdi=true