Spatially resolved NMR spectroscopy of heterogeneous gas phase hydrogenation of 1,3-butadiene with parahydrogen
Magnetic resonance-based methods such as nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are widely used to provide in situ/operando information of chemical reactions. However, the low spin density and magnetic field inhomogeneities associated with heterogeneous catalytic syste...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2020-01, Vol.10 (1), p.99-104 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104 |
---|---|
container_issue | 1 |
container_start_page | 99 |
container_title | Catalysis science & technology |
container_volume | 10 |
creator | Svyatova, Alexandra Kononenko, Elizaveta S Kovtunov, Kirill V Lebedev, Dmitry Evgeniy Yu Gerasimov Bukhtiyarov, Andrey V Prosvirin, Igor P Bukhtiyarov, Valerii I Müller, Christoph R Fedorov, Alexey Koptyug, Igor V |
description | Magnetic resonance-based methods such as nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are widely used to provide in situ/operando information of chemical reactions. However, the low spin density and magnetic field inhomogeneities associated with heterogeneous catalytic systems containing gaseous reactants complicate such studies. Hyperpolarization techniques, in particular parahydrogen-induced polarization (PHIP), increase significantly the NMR signal intensity. In this study, we test 16 glass tube reactors containing Pd, Pt, Rh or Ir nanoparticles dispersed on a thin layer of TiO2, CeO2, SiO2 or Al2O3 for the hydrogenation of 1,3-butadiene using parahydrogen. The catalytic coatings of Ir and Rh gave hydrogenation products with the highest nuclear spin polarization while the coatings of Pd are the most selective ones for the semihydrogenation of 1,3-butadiene to 1- and 2-butenes. Spatially resolved NMR spectroscopy of the reagent and the product distribution along the reactor axis provided further mechanistic insight into the catalytic function of these reactive coatings under operando conditions. |
doi_str_mv | 10.1039/c9cy02100k |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2331814348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331814348</sourcerecordid><originalsourceid>FETCH-LOGICAL-g186t-6e008ae5b7d638a7fc9f5c039c426bde5ff0d08bf0829492c981d814f30811893</originalsourceid><addsrcrecordid>eNo9j0tLxDAUhYMoOIyz8RcE3Fq9adJOspTBF4wKPtZDmtxMO5amNqnSf298ns09HD7O5RByzOCMAVfnRpkJcgbwukdmOQiRiWXJ9v99wQ_JIoQdJAnFQOYz4p96HRvdthMdMPj2HS29v3ukoUcTBx-M7yfqHa0x4uC32KEfA93qQPtaB6T1ZL_jVOK7L5Cd8qwao7ZNYulHE2va60H_cUfkwOk24OL3zsnL1eXz6iZbP1zfri7W2ZbJMmYlAkiNRbW0JZd66YxyhUkjjcjLymLhHFiQlUsjlFC5UZJZyYTjIBmTis_JyU9vP_i3EUPc7Pw4dOnlJuecJZQLyT8BR_Zc2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331814348</pqid></control><display><type>article</type><title>Spatially resolved NMR spectroscopy of heterogeneous gas phase hydrogenation of 1,3-butadiene with parahydrogen</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Svyatova, Alexandra ; Kononenko, Elizaveta S ; Kovtunov, Kirill V ; Lebedev, Dmitry ; Evgeniy Yu Gerasimov ; Bukhtiyarov, Andrey V ; Prosvirin, Igor P ; Bukhtiyarov, Valerii I ; Müller, Christoph R ; Fedorov, Alexey ; Koptyug, Igor V</creator><creatorcontrib>Svyatova, Alexandra ; Kononenko, Elizaveta S ; Kovtunov, Kirill V ; Lebedev, Dmitry ; Evgeniy Yu Gerasimov ; Bukhtiyarov, Andrey V ; Prosvirin, Igor P ; Bukhtiyarov, Valerii I ; Müller, Christoph R ; Fedorov, Alexey ; Koptyug, Igor V</creatorcontrib><description>Magnetic resonance-based methods such as nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are widely used to provide in situ/operando information of chemical reactions. However, the low spin density and magnetic field inhomogeneities associated with heterogeneous catalytic systems containing gaseous reactants complicate such studies. Hyperpolarization techniques, in particular parahydrogen-induced polarization (PHIP), increase significantly the NMR signal intensity. In this study, we test 16 glass tube reactors containing Pd, Pt, Rh or Ir nanoparticles dispersed on a thin layer of TiO2, CeO2, SiO2 or Al2O3 for the hydrogenation of 1,3-butadiene using parahydrogen. The catalytic coatings of Ir and Rh gave hydrogenation products with the highest nuclear spin polarization while the coatings of Pd are the most selective ones for the semihydrogenation of 1,3-butadiene to 1- and 2-butenes. Spatially resolved NMR spectroscopy of the reagent and the product distribution along the reactor axis provided further mechanistic insight into the catalytic function of these reactive coatings under operando conditions.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/c9cy02100k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum oxide ; Butadiene ; Butenes ; Cerium oxides ; Chemical reactions ; Coatings ; Hydrogenation ; Induced polarization ; Iridium ; Magnetic resonance imaging ; Nanoparticles ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Nuclear reactors ; Nuclear spin ; Organic chemistry ; Palladium ; Platinum ; Polarization (spin alignment) ; Reagents ; Rhodium ; Silicon dioxide ; Spectrum analysis ; Titanium dioxide ; Vapor phases</subject><ispartof>Catalysis science & technology, 2020-01, Vol.10 (1), p.99-104</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Svyatova, Alexandra</creatorcontrib><creatorcontrib>Kononenko, Elizaveta S</creatorcontrib><creatorcontrib>Kovtunov, Kirill V</creatorcontrib><creatorcontrib>Lebedev, Dmitry</creatorcontrib><creatorcontrib>Evgeniy Yu Gerasimov</creatorcontrib><creatorcontrib>Bukhtiyarov, Andrey V</creatorcontrib><creatorcontrib>Prosvirin, Igor P</creatorcontrib><creatorcontrib>Bukhtiyarov, Valerii I</creatorcontrib><creatorcontrib>Müller, Christoph R</creatorcontrib><creatorcontrib>Fedorov, Alexey</creatorcontrib><creatorcontrib>Koptyug, Igor V</creatorcontrib><title>Spatially resolved NMR spectroscopy of heterogeneous gas phase hydrogenation of 1,3-butadiene with parahydrogen</title><title>Catalysis science & technology</title><description>Magnetic resonance-based methods such as nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are widely used to provide in situ/operando information of chemical reactions. However, the low spin density and magnetic field inhomogeneities associated with heterogeneous catalytic systems containing gaseous reactants complicate such studies. Hyperpolarization techniques, in particular parahydrogen-induced polarization (PHIP), increase significantly the NMR signal intensity. In this study, we test 16 glass tube reactors containing Pd, Pt, Rh or Ir nanoparticles dispersed on a thin layer of TiO2, CeO2, SiO2 or Al2O3 for the hydrogenation of 1,3-butadiene using parahydrogen. The catalytic coatings of Ir and Rh gave hydrogenation products with the highest nuclear spin polarization while the coatings of Pd are the most selective ones for the semihydrogenation of 1,3-butadiene to 1- and 2-butenes. Spatially resolved NMR spectroscopy of the reagent and the product distribution along the reactor axis provided further mechanistic insight into the catalytic function of these reactive coatings under operando conditions.</description><subject>Aluminum oxide</subject><subject>Butadiene</subject><subject>Butenes</subject><subject>Cerium oxides</subject><subject>Chemical reactions</subject><subject>Coatings</subject><subject>Hydrogenation</subject><subject>Induced polarization</subject><subject>Iridium</subject><subject>Magnetic resonance imaging</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear reactors</subject><subject>Nuclear spin</subject><subject>Organic chemistry</subject><subject>Palladium</subject><subject>Platinum</subject><subject>Polarization (spin alignment)</subject><subject>Reagents</subject><subject>Rhodium</subject><subject>Silicon dioxide</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><subject>Vapor phases</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLxDAUhYMoOIyz8RcE3Fq9adJOspTBF4wKPtZDmtxMO5amNqnSf298ns09HD7O5RByzOCMAVfnRpkJcgbwukdmOQiRiWXJ9v99wQ_JIoQdJAnFQOYz4p96HRvdthMdMPj2HS29v3ukoUcTBx-M7yfqHa0x4uC32KEfA93qQPtaB6T1ZL_jVOK7L5Cd8qwao7ZNYulHE2va60H_cUfkwOk24OL3zsnL1eXz6iZbP1zfri7W2ZbJMmYlAkiNRbW0JZd66YxyhUkjjcjLymLhHFiQlUsjlFC5UZJZyYTjIBmTis_JyU9vP_i3EUPc7Pw4dOnlJuecJZQLyT8BR_Zc2w</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Svyatova, Alexandra</creator><creator>Kononenko, Elizaveta S</creator><creator>Kovtunov, Kirill V</creator><creator>Lebedev, Dmitry</creator><creator>Evgeniy Yu Gerasimov</creator><creator>Bukhtiyarov, Andrey V</creator><creator>Prosvirin, Igor P</creator><creator>Bukhtiyarov, Valerii I</creator><creator>Müller, Christoph R</creator><creator>Fedorov, Alexey</creator><creator>Koptyug, Igor V</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200101</creationdate><title>Spatially resolved NMR spectroscopy of heterogeneous gas phase hydrogenation of 1,3-butadiene with parahydrogen</title><author>Svyatova, Alexandra ; Kononenko, Elizaveta S ; Kovtunov, Kirill V ; Lebedev, Dmitry ; Evgeniy Yu Gerasimov ; Bukhtiyarov, Andrey V ; Prosvirin, Igor P ; Bukhtiyarov, Valerii I ; Müller, Christoph R ; Fedorov, Alexey ; Koptyug, Igor V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g186t-6e008ae5b7d638a7fc9f5c039c426bde5ff0d08bf0829492c981d814f30811893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Butadiene</topic><topic>Butenes</topic><topic>Cerium oxides</topic><topic>Chemical reactions</topic><topic>Coatings</topic><topic>Hydrogenation</topic><topic>Induced polarization</topic><topic>Iridium</topic><topic>Magnetic resonance imaging</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear reactors</topic><topic>Nuclear spin</topic><topic>Organic chemistry</topic><topic>Palladium</topic><topic>Platinum</topic><topic>Polarization (spin alignment)</topic><topic>Reagents</topic><topic>Rhodium</topic><topic>Silicon dioxide</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svyatova, Alexandra</creatorcontrib><creatorcontrib>Kononenko, Elizaveta S</creatorcontrib><creatorcontrib>Kovtunov, Kirill V</creatorcontrib><creatorcontrib>Lebedev, Dmitry</creatorcontrib><creatorcontrib>Evgeniy Yu Gerasimov</creatorcontrib><creatorcontrib>Bukhtiyarov, Andrey V</creatorcontrib><creatorcontrib>Prosvirin, Igor P</creatorcontrib><creatorcontrib>Bukhtiyarov, Valerii I</creatorcontrib><creatorcontrib>Müller, Christoph R</creatorcontrib><creatorcontrib>Fedorov, Alexey</creatorcontrib><creatorcontrib>Koptyug, Igor V</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svyatova, Alexandra</au><au>Kononenko, Elizaveta S</au><au>Kovtunov, Kirill V</au><au>Lebedev, Dmitry</au><au>Evgeniy Yu Gerasimov</au><au>Bukhtiyarov, Andrey V</au><au>Prosvirin, Igor P</au><au>Bukhtiyarov, Valerii I</au><au>Müller, Christoph R</au><au>Fedorov, Alexey</au><au>Koptyug, Igor V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially resolved NMR spectroscopy of heterogeneous gas phase hydrogenation of 1,3-butadiene with parahydrogen</atitle><jtitle>Catalysis science & technology</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>99</spage><epage>104</epage><pages>99-104</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>Magnetic resonance-based methods such as nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are widely used to provide in situ/operando information of chemical reactions. However, the low spin density and magnetic field inhomogeneities associated with heterogeneous catalytic systems containing gaseous reactants complicate such studies. Hyperpolarization techniques, in particular parahydrogen-induced polarization (PHIP), increase significantly the NMR signal intensity. In this study, we test 16 glass tube reactors containing Pd, Pt, Rh or Ir nanoparticles dispersed on a thin layer of TiO2, CeO2, SiO2 or Al2O3 for the hydrogenation of 1,3-butadiene using parahydrogen. The catalytic coatings of Ir and Rh gave hydrogenation products with the highest nuclear spin polarization while the coatings of Pd are the most selective ones for the semihydrogenation of 1,3-butadiene to 1- and 2-butenes. Spatially resolved NMR spectroscopy of the reagent and the product distribution along the reactor axis provided further mechanistic insight into the catalytic function of these reactive coatings under operando conditions.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cy02100k</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2044-4753 |
ispartof | Catalysis science & technology, 2020-01, Vol.10 (1), p.99-104 |
issn | 2044-4753 2044-4761 |
language | eng |
recordid | cdi_proquest_journals_2331814348 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Aluminum oxide Butadiene Butenes Cerium oxides Chemical reactions Coatings Hydrogenation Induced polarization Iridium Magnetic resonance imaging Nanoparticles NMR NMR spectroscopy Nuclear magnetic resonance Nuclear reactors Nuclear spin Organic chemistry Palladium Platinum Polarization (spin alignment) Reagents Rhodium Silicon dioxide Spectrum analysis Titanium dioxide Vapor phases |
title | Spatially resolved NMR spectroscopy of heterogeneous gas phase hydrogenation of 1,3-butadiene with parahydrogen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20resolved%20NMR%20spectroscopy%20of%20heterogeneous%20gas%20phase%20hydrogenation%20of%201,3-butadiene%20with%20parahydrogen&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Svyatova,%20Alexandra&rft.date=2020-01-01&rft.volume=10&rft.issue=1&rft.spage=99&rft.epage=104&rft.pages=99-104&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/c9cy02100k&rft_dat=%3Cproquest%3E2331814348%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331814348&rft_id=info:pmid/&rfr_iscdi=true |