Energy costs of salt tolerance in crop plants

Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2020-02, Vol.225 (3), p.1072-1090
Hauptverfasser: Munns, Rana, Day, David A., Fricke, Wieland, Watt, Michelle, Arsova, Borjana, Barkla, Bronwyn J., Bose, Jayakumar, Byrt, Caitlin S., Chen, Zhong-Hua, Foster, Kylie J., Gilliham, Matthew, Henderson, Sam W., Jenkins, Colin L. D., Kronzucker, Herbert J., Miklavcic, Stanley J., Plett, Darren, Roy, Stuart J., Shabala, Sergey, Shelden, Megan C., Soole, Kathleen L., Taylor, Nicolas L., Tester, Mark, Wege, Stefanie, Wegner, Lars H., Tyerman, Stephen D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1090
container_issue 3
container_start_page 1072
container_title The New phytologist
container_volume 225
creator Munns, Rana
Day, David A.
Fricke, Wieland
Watt, Michelle
Arsova, Borjana
Barkla, Bronwyn J.
Bose, Jayakumar
Byrt, Caitlin S.
Chen, Zhong-Hua
Foster, Kylie J.
Gilliham, Matthew
Henderson, Sam W.
Jenkins, Colin L. D.
Kronzucker, Herbert J.
Miklavcic, Stanley J.
Plett, Darren
Roy, Stuart J.
Shabala, Sergey
Shelden, Megan C.
Soole, Kathleen L.
Taylor, Nicolas L.
Tester, Mark
Wege, Stefanie
Wegner, Lars H.
Tyerman, Stephen D.
description Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion up take are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H⁺ -ATPase also is a critical component. One proposed leak, that of Na⁺ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na⁺ and Cl⁻ concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assess ment of the energy costs of Na Cl tolerance to guide breeding and engineering of molecular components.
doi_str_mv 10.1111/nph.15864
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2331715391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26928245</jstor_id><sourcerecordid>26928245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4764-9445c49f7a71a8e2ede79438fe3d30b56f125d264397c18ca2e6d00e3b61a9213</originalsourceid><addsrcrecordid>eNp1kE1PAjEURRujEUQX_gBNE1cuBvr9sTQExYSoC03cNaXTUcgwHdshhH_v4AA73-Ztzj3v5QJwjdEQtzOq6u8h5kqwE9DHTOhMYSpPQR8hojLBxGcPXKS0RAhpLsg56FGMEGNa9EE2qXz82kIXUpNgKGCyZQObUPpoK-fhooIuhhrWpa2adAnOClsmf7XfA_DxOHkfT7PZ69Pz-GGWOSYFyzRj3DFdSCuxVZ743EvNqCo8zSmac1FgwnMiGNXSYeUs8SJHyNO5wFYTTAfgrvPWMfysfWrMMqxj1Z40hFIsMad6R913VPthStEXpo6LlY1bg5HZFWPaYsxfMS17uzeu5yufH8lDEy0w6oDNovTb_03m5W16UN50iWVqQjwmiNBEEcbpL7pOdA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331715391</pqid></control><display><type>article</type><title>Energy costs of salt tolerance in crop plants</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><creator>Munns, Rana ; Day, David A. ; Fricke, Wieland ; Watt, Michelle ; Arsova, Borjana ; Barkla, Bronwyn J. ; Bose, Jayakumar ; Byrt, Caitlin S. ; Chen, Zhong-Hua ; Foster, Kylie J. ; Gilliham, Matthew ; Henderson, Sam W. ; Jenkins, Colin L. D. ; Kronzucker, Herbert J. ; Miklavcic, Stanley J. ; Plett, Darren ; Roy, Stuart J. ; Shabala, Sergey ; Shelden, Megan C. ; Soole, Kathleen L. ; Taylor, Nicolas L. ; Tester, Mark ; Wege, Stefanie ; Wegner, Lars H. ; Tyerman, Stephen D.</creator><creatorcontrib>Munns, Rana ; Day, David A. ; Fricke, Wieland ; Watt, Michelle ; Arsova, Borjana ; Barkla, Bronwyn J. ; Bose, Jayakumar ; Byrt, Caitlin S. ; Chen, Zhong-Hua ; Foster, Kylie J. ; Gilliham, Matthew ; Henderson, Sam W. ; Jenkins, Colin L. D. ; Kronzucker, Herbert J. ; Miklavcic, Stanley J. ; Plett, Darren ; Roy, Stuart J. ; Shabala, Sergey ; Shelden, Megan C. ; Soole, Kathleen L. ; Taylor, Nicolas L. ; Tester, Mark ; Wege, Stefanie ; Wegner, Lars H. ; Tyerman, Stephen D.</creatorcontrib><description>Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion up take are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H⁺ -ATPase also is a critical component. One proposed leak, that of Na⁺ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na⁺ and Cl⁻ concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assess ment of the energy costs of Na Cl tolerance to guide breeding and engineering of molecular components.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15864</identifier><identifier>PMID: 31004496</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Agricultural economics ; barley and wheat ; Biological Transport ; Breeding ; Cations ; Cell Respiration ; Channels ; Chloroplasts ; Computer architecture ; Cost assessments ; Costs ; Coupling (molecular) ; Critical components ; Crops, Agricultural - physiology ; Energy ; Energy conservation ; Energy costs ; Energy efficiency ; Energy Metabolism ; Energy requirements ; Experimentation ; Ion channels ; Leaves ; membrane transport ; Membranes ; Mitochondria ; Modelling ; photosynthesis ; Plant Roots - anatomy &amp; histology ; respiration ; root anatomy ; Salinity ; Salinity effects ; Salinity tolerance ; Salt tolerance ; Salt Tolerance - physiology ; Sodium ; sodium and chloride transport ; Sodium chloride ; Tansley review ; Uptake ; Vacuoles ; Water flow</subject><ispartof>The New phytologist, 2020-02, Vol.225 (3), p.1072-1090</ispartof><rights>2019 The Authors © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2020 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4764-9445c49f7a71a8e2ede79438fe3d30b56f125d264397c18ca2e6d00e3b61a9213</citedby><cites>FETCH-LOGICAL-c4764-9445c49f7a71a8e2ede79438fe3d30b56f125d264397c18ca2e6d00e3b61a9213</cites><orcidid>0000-0002-9347-8948 ; 0000-0002-4691-8023 ; 0000-0003-0666-3078 ; 0000-0002-7232-5889 ; 0000-0001-8549-2873 ; 0000-0003-2004-5217 ; 0000-0002-7203-3763 ; 0000-0003-0411-9431 ; 0000-0002-9358-0029 ; 0000-0001-7967-2173 ; 0000-0002-0566-2009 ; 0000-0003-2345-8981 ; 0000-0002-9551-8755 ; 0000-0003-2455-1643 ; 0000-0002-9263-8436 ; 0000-0002-0565-2951 ; 0000-0002-1514-1389 ; 0000-0001-7843-0957 ; 0000-0003-2651-3915 ; 0000-0003-3019-1891 ; 0000-0002-5085-8801 ; 0000-0002-8837-3404 ; 0000-0002-7531-320X ; 0000-0002-2361-246X ; 0000-0002-7519-2698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26928245$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26928245$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,1412,1428,27905,27906,45555,45556,46390,46814,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31004496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Munns, Rana</creatorcontrib><creatorcontrib>Day, David A.</creatorcontrib><creatorcontrib>Fricke, Wieland</creatorcontrib><creatorcontrib>Watt, Michelle</creatorcontrib><creatorcontrib>Arsova, Borjana</creatorcontrib><creatorcontrib>Barkla, Bronwyn J.</creatorcontrib><creatorcontrib>Bose, Jayakumar</creatorcontrib><creatorcontrib>Byrt, Caitlin S.</creatorcontrib><creatorcontrib>Chen, Zhong-Hua</creatorcontrib><creatorcontrib>Foster, Kylie J.</creatorcontrib><creatorcontrib>Gilliham, Matthew</creatorcontrib><creatorcontrib>Henderson, Sam W.</creatorcontrib><creatorcontrib>Jenkins, Colin L. D.</creatorcontrib><creatorcontrib>Kronzucker, Herbert J.</creatorcontrib><creatorcontrib>Miklavcic, Stanley J.</creatorcontrib><creatorcontrib>Plett, Darren</creatorcontrib><creatorcontrib>Roy, Stuart J.</creatorcontrib><creatorcontrib>Shabala, Sergey</creatorcontrib><creatorcontrib>Shelden, Megan C.</creatorcontrib><creatorcontrib>Soole, Kathleen L.</creatorcontrib><creatorcontrib>Taylor, Nicolas L.</creatorcontrib><creatorcontrib>Tester, Mark</creatorcontrib><creatorcontrib>Wege, Stefanie</creatorcontrib><creatorcontrib>Wegner, Lars H.</creatorcontrib><creatorcontrib>Tyerman, Stephen D.</creatorcontrib><title>Energy costs of salt tolerance in crop plants</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion up take are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H⁺ -ATPase also is a critical component. One proposed leak, that of Na⁺ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na⁺ and Cl⁻ concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assess ment of the energy costs of Na Cl tolerance to guide breeding and engineering of molecular components.</description><subject>Agricultural economics</subject><subject>barley and wheat</subject><subject>Biological Transport</subject><subject>Breeding</subject><subject>Cations</subject><subject>Cell Respiration</subject><subject>Channels</subject><subject>Chloroplasts</subject><subject>Computer architecture</subject><subject>Cost assessments</subject><subject>Costs</subject><subject>Coupling (molecular)</subject><subject>Critical components</subject><subject>Crops, Agricultural - physiology</subject><subject>Energy</subject><subject>Energy conservation</subject><subject>Energy costs</subject><subject>Energy efficiency</subject><subject>Energy Metabolism</subject><subject>Energy requirements</subject><subject>Experimentation</subject><subject>Ion channels</subject><subject>Leaves</subject><subject>membrane transport</subject><subject>Membranes</subject><subject>Mitochondria</subject><subject>Modelling</subject><subject>photosynthesis</subject><subject>Plant Roots - anatomy &amp; histology</subject><subject>respiration</subject><subject>root anatomy</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity tolerance</subject><subject>Salt tolerance</subject><subject>Salt Tolerance - physiology</subject><subject>Sodium</subject><subject>sodium and chloride transport</subject><subject>Sodium chloride</subject><subject>Tansley review</subject><subject>Uptake</subject><subject>Vacuoles</subject><subject>Water flow</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1PAjEURRujEUQX_gBNE1cuBvr9sTQExYSoC03cNaXTUcgwHdshhH_v4AA73-Ztzj3v5QJwjdEQtzOq6u8h5kqwE9DHTOhMYSpPQR8hojLBxGcPXKS0RAhpLsg56FGMEGNa9EE2qXz82kIXUpNgKGCyZQObUPpoK-fhooIuhhrWpa2adAnOClsmf7XfA_DxOHkfT7PZ69Pz-GGWOSYFyzRj3DFdSCuxVZ743EvNqCo8zSmac1FgwnMiGNXSYeUs8SJHyNO5wFYTTAfgrvPWMfysfWrMMqxj1Z40hFIsMad6R913VPthStEXpo6LlY1bg5HZFWPaYsxfMS17uzeu5yufH8lDEy0w6oDNovTb_03m5W16UN50iWVqQjwmiNBEEcbpL7pOdA4</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Munns, Rana</creator><creator>Day, David A.</creator><creator>Fricke, Wieland</creator><creator>Watt, Michelle</creator><creator>Arsova, Borjana</creator><creator>Barkla, Bronwyn J.</creator><creator>Bose, Jayakumar</creator><creator>Byrt, Caitlin S.</creator><creator>Chen, Zhong-Hua</creator><creator>Foster, Kylie J.</creator><creator>Gilliham, Matthew</creator><creator>Henderson, Sam W.</creator><creator>Jenkins, Colin L. D.</creator><creator>Kronzucker, Herbert J.</creator><creator>Miklavcic, Stanley J.</creator><creator>Plett, Darren</creator><creator>Roy, Stuart J.</creator><creator>Shabala, Sergey</creator><creator>Shelden, Megan C.</creator><creator>Soole, Kathleen L.</creator><creator>Taylor, Nicolas L.</creator><creator>Tester, Mark</creator><creator>Wege, Stefanie</creator><creator>Wegner, Lars H.</creator><creator>Tyerman, Stephen D.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-9347-8948</orcidid><orcidid>https://orcid.org/0000-0002-4691-8023</orcidid><orcidid>https://orcid.org/0000-0003-0666-3078</orcidid><orcidid>https://orcid.org/0000-0002-7232-5889</orcidid><orcidid>https://orcid.org/0000-0001-8549-2873</orcidid><orcidid>https://orcid.org/0000-0003-2004-5217</orcidid><orcidid>https://orcid.org/0000-0002-7203-3763</orcidid><orcidid>https://orcid.org/0000-0003-0411-9431</orcidid><orcidid>https://orcid.org/0000-0002-9358-0029</orcidid><orcidid>https://orcid.org/0000-0001-7967-2173</orcidid><orcidid>https://orcid.org/0000-0002-0566-2009</orcidid><orcidid>https://orcid.org/0000-0003-2345-8981</orcidid><orcidid>https://orcid.org/0000-0002-9551-8755</orcidid><orcidid>https://orcid.org/0000-0003-2455-1643</orcidid><orcidid>https://orcid.org/0000-0002-9263-8436</orcidid><orcidid>https://orcid.org/0000-0002-0565-2951</orcidid><orcidid>https://orcid.org/0000-0002-1514-1389</orcidid><orcidid>https://orcid.org/0000-0001-7843-0957</orcidid><orcidid>https://orcid.org/0000-0003-2651-3915</orcidid><orcidid>https://orcid.org/0000-0003-3019-1891</orcidid><orcidid>https://orcid.org/0000-0002-5085-8801</orcidid><orcidid>https://orcid.org/0000-0002-8837-3404</orcidid><orcidid>https://orcid.org/0000-0002-7531-320X</orcidid><orcidid>https://orcid.org/0000-0002-2361-246X</orcidid><orcidid>https://orcid.org/0000-0002-7519-2698</orcidid></search><sort><creationdate>202002</creationdate><title>Energy costs of salt tolerance in crop plants</title><author>Munns, Rana ; Day, David A. ; Fricke, Wieland ; Watt, Michelle ; Arsova, Borjana ; Barkla, Bronwyn J. ; Bose, Jayakumar ; Byrt, Caitlin S. ; Chen, Zhong-Hua ; Foster, Kylie J. ; Gilliham, Matthew ; Henderson, Sam W. ; Jenkins, Colin L. D. ; Kronzucker, Herbert J. ; Miklavcic, Stanley J. ; Plett, Darren ; Roy, Stuart J. ; Shabala, Sergey ; Shelden, Megan C. ; Soole, Kathleen L. ; Taylor, Nicolas L. ; Tester, Mark ; Wege, Stefanie ; Wegner, Lars H. ; Tyerman, Stephen D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4764-9445c49f7a71a8e2ede79438fe3d30b56f125d264397c18ca2e6d00e3b61a9213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural economics</topic><topic>barley and wheat</topic><topic>Biological Transport</topic><topic>Breeding</topic><topic>Cations</topic><topic>Cell Respiration</topic><topic>Channels</topic><topic>Chloroplasts</topic><topic>Computer architecture</topic><topic>Cost assessments</topic><topic>Costs</topic><topic>Coupling (molecular)</topic><topic>Critical components</topic><topic>Crops, Agricultural - physiology</topic><topic>Energy</topic><topic>Energy conservation</topic><topic>Energy costs</topic><topic>Energy efficiency</topic><topic>Energy Metabolism</topic><topic>Energy requirements</topic><topic>Experimentation</topic><topic>Ion channels</topic><topic>Leaves</topic><topic>membrane transport</topic><topic>Membranes</topic><topic>Mitochondria</topic><topic>Modelling</topic><topic>photosynthesis</topic><topic>Plant Roots - anatomy &amp; histology</topic><topic>respiration</topic><topic>root anatomy</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity tolerance</topic><topic>Salt tolerance</topic><topic>Salt Tolerance - physiology</topic><topic>Sodium</topic><topic>sodium and chloride transport</topic><topic>Sodium chloride</topic><topic>Tansley review</topic><topic>Uptake</topic><topic>Vacuoles</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munns, Rana</creatorcontrib><creatorcontrib>Day, David A.</creatorcontrib><creatorcontrib>Fricke, Wieland</creatorcontrib><creatorcontrib>Watt, Michelle</creatorcontrib><creatorcontrib>Arsova, Borjana</creatorcontrib><creatorcontrib>Barkla, Bronwyn J.</creatorcontrib><creatorcontrib>Bose, Jayakumar</creatorcontrib><creatorcontrib>Byrt, Caitlin S.</creatorcontrib><creatorcontrib>Chen, Zhong-Hua</creatorcontrib><creatorcontrib>Foster, Kylie J.</creatorcontrib><creatorcontrib>Gilliham, Matthew</creatorcontrib><creatorcontrib>Henderson, Sam W.</creatorcontrib><creatorcontrib>Jenkins, Colin L. D.</creatorcontrib><creatorcontrib>Kronzucker, Herbert J.</creatorcontrib><creatorcontrib>Miklavcic, Stanley J.</creatorcontrib><creatorcontrib>Plett, Darren</creatorcontrib><creatorcontrib>Roy, Stuart J.</creatorcontrib><creatorcontrib>Shabala, Sergey</creatorcontrib><creatorcontrib>Shelden, Megan C.</creatorcontrib><creatorcontrib>Soole, Kathleen L.</creatorcontrib><creatorcontrib>Taylor, Nicolas L.</creatorcontrib><creatorcontrib>Tester, Mark</creatorcontrib><creatorcontrib>Wege, Stefanie</creatorcontrib><creatorcontrib>Wegner, Lars H.</creatorcontrib><creatorcontrib>Tyerman, Stephen D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munns, Rana</au><au>Day, David A.</au><au>Fricke, Wieland</au><au>Watt, Michelle</au><au>Arsova, Borjana</au><au>Barkla, Bronwyn J.</au><au>Bose, Jayakumar</au><au>Byrt, Caitlin S.</au><au>Chen, Zhong-Hua</au><au>Foster, Kylie J.</au><au>Gilliham, Matthew</au><au>Henderson, Sam W.</au><au>Jenkins, Colin L. D.</au><au>Kronzucker, Herbert J.</au><au>Miklavcic, Stanley J.</au><au>Plett, Darren</au><au>Roy, Stuart J.</au><au>Shabala, Sergey</au><au>Shelden, Megan C.</au><au>Soole, Kathleen L.</au><au>Taylor, Nicolas L.</au><au>Tester, Mark</au><au>Wege, Stefanie</au><au>Wegner, Lars H.</au><au>Tyerman, Stephen D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy costs of salt tolerance in crop plants</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2020-02</date><risdate>2020</risdate><volume>225</volume><issue>3</issue><spage>1072</spage><epage>1090</epage><pages>1072-1090</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion up take are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H⁺ -ATPase also is a critical component. One proposed leak, that of Na⁺ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na⁺ and Cl⁻ concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assess ment of the energy costs of Na Cl tolerance to guide breeding and engineering of molecular components.</abstract><cop>England</cop><pub>Wiley</pub><pmid>31004496</pmid><doi>10.1111/nph.15864</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9347-8948</orcidid><orcidid>https://orcid.org/0000-0002-4691-8023</orcidid><orcidid>https://orcid.org/0000-0003-0666-3078</orcidid><orcidid>https://orcid.org/0000-0002-7232-5889</orcidid><orcidid>https://orcid.org/0000-0001-8549-2873</orcidid><orcidid>https://orcid.org/0000-0003-2004-5217</orcidid><orcidid>https://orcid.org/0000-0002-7203-3763</orcidid><orcidid>https://orcid.org/0000-0003-0411-9431</orcidid><orcidid>https://orcid.org/0000-0002-9358-0029</orcidid><orcidid>https://orcid.org/0000-0001-7967-2173</orcidid><orcidid>https://orcid.org/0000-0002-0566-2009</orcidid><orcidid>https://orcid.org/0000-0003-2345-8981</orcidid><orcidid>https://orcid.org/0000-0002-9551-8755</orcidid><orcidid>https://orcid.org/0000-0003-2455-1643</orcidid><orcidid>https://orcid.org/0000-0002-9263-8436</orcidid><orcidid>https://orcid.org/0000-0002-0565-2951</orcidid><orcidid>https://orcid.org/0000-0002-1514-1389</orcidid><orcidid>https://orcid.org/0000-0001-7843-0957</orcidid><orcidid>https://orcid.org/0000-0003-2651-3915</orcidid><orcidid>https://orcid.org/0000-0003-3019-1891</orcidid><orcidid>https://orcid.org/0000-0002-5085-8801</orcidid><orcidid>https://orcid.org/0000-0002-8837-3404</orcidid><orcidid>https://orcid.org/0000-0002-7531-320X</orcidid><orcidid>https://orcid.org/0000-0002-2361-246X</orcidid><orcidid>https://orcid.org/0000-0002-7519-2698</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2020-02, Vol.225 (3), p.1072-1090
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_journals_2331715391
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Wiley Free Content
subjects Agricultural economics
barley and wheat
Biological Transport
Breeding
Cations
Cell Respiration
Channels
Chloroplasts
Computer architecture
Cost assessments
Costs
Coupling (molecular)
Critical components
Crops, Agricultural - physiology
Energy
Energy conservation
Energy costs
Energy efficiency
Energy Metabolism
Energy requirements
Experimentation
Ion channels
Leaves
membrane transport
Membranes
Mitochondria
Modelling
photosynthesis
Plant Roots - anatomy & histology
respiration
root anatomy
Salinity
Salinity effects
Salinity tolerance
Salt tolerance
Salt Tolerance - physiology
Sodium
sodium and chloride transport
Sodium chloride
Tansley review
Uptake
Vacuoles
Water flow
title Energy costs of salt tolerance in crop plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20costs%20of%20salt%20tolerance%20in%20crop%20plants&rft.jtitle=The%20New%20phytologist&rft.au=Munns,%20Rana&rft.date=2020-02&rft.volume=225&rft.issue=3&rft.spage=1072&rft.epage=1090&rft.pages=1072-1090&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15864&rft_dat=%3Cjstor_proqu%3E26928245%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331715391&rft_id=info:pmid/31004496&rft_jstor_id=26928245&rfr_iscdi=true