A Faithful Discretization of the Verbose Persistent Homology Transform
The persistent homology transform (PHT) represents a shape with a multiset of persistence diagrams parameterized by the sphere of directions in the ambient space. In this work, we describe a finite set of diagrams that discretize the PHT such that it faithfully represents the underlying shape. We pr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fasy, Brittany Terese Micka, Samuel Millman, David L Schenfisch, Anna Williams, Lucia |
description | The persistent homology transform (PHT) represents a shape with a multiset of persistence diagrams parameterized by the sphere of directions in the ambient space. In this work, we describe a finite set of diagrams that discretize the PHT such that it faithfully represents the underlying shape. We provide a discretization that is exponential in the dimension of the shape. Moreover, we show that this discretization is stable with respect to various perturbations and we provide an algorithm for computing the discretization. Our approach relies only on knowing the heights and dimensions of topological events, which means that it can be adapted to provide discretizations of other dimension-returning topological transforms, including the Betti function transform. With mild alterations, we also adapt our methods to faithfully discretize the Euler characteristic function transform. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2331699644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331699644</sourcerecordid><originalsourceid>FETCH-proquest_journals_23316996443</originalsourceid><addsrcrecordid>eNqNjrEKwjAUAIMgWLT_8MC5UJO22lHU0tGhuEqUF5vS5mleOujXq-AHON1wN9xERFKpVbLJpJyJmLlL01QWa5nnKhLVFiptQ2vGHvaWrx6DfelgyQEZCC3CCf2FGOGIni0HdAFqGqin2xMarx0b8sNCTI3uGeMf52JZHZpdndw9PUbkcO5o9O6jzt-ZoiyLLFP_VW_KgjuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331699644</pqid></control><display><type>article</type><title>A Faithful Discretization of the Verbose Persistent Homology Transform</title><source>Free E- Journals</source><creator>Fasy, Brittany Terese ; Micka, Samuel ; Millman, David L ; Schenfisch, Anna ; Williams, Lucia</creator><creatorcontrib>Fasy, Brittany Terese ; Micka, Samuel ; Millman, David L ; Schenfisch, Anna ; Williams, Lucia</creatorcontrib><description>The persistent homology transform (PHT) represents a shape with a multiset of persistence diagrams parameterized by the sphere of directions in the ambient space. In this work, we describe a finite set of diagrams that discretize the PHT such that it faithfully represents the underlying shape. We provide a discretization that is exponential in the dimension of the shape. Moreover, we show that this discretization is stable with respect to various perturbations and we provide an algorithm for computing the discretization. Our approach relies only on knowing the heights and dimensions of topological events, which means that it can be adapted to provide discretizations of other dimension-returning topological transforms, including the Betti function transform. With mild alterations, we also adapt our methods to faithfully discretize the Euler characteristic function transform.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Reconstruction</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fasy, Brittany Terese</creatorcontrib><creatorcontrib>Micka, Samuel</creatorcontrib><creatorcontrib>Millman, David L</creatorcontrib><creatorcontrib>Schenfisch, Anna</creatorcontrib><creatorcontrib>Williams, Lucia</creatorcontrib><title>A Faithful Discretization of the Verbose Persistent Homology Transform</title><title>arXiv.org</title><description>The persistent homology transform (PHT) represents a shape with a multiset of persistence diagrams parameterized by the sphere of directions in the ambient space. In this work, we describe a finite set of diagrams that discretize the PHT such that it faithfully represents the underlying shape. We provide a discretization that is exponential in the dimension of the shape. Moreover, we show that this discretization is stable with respect to various perturbations and we provide an algorithm for computing the discretization. Our approach relies only on knowing the heights and dimensions of topological events, which means that it can be adapted to provide discretizations of other dimension-returning topological transforms, including the Betti function transform. With mild alterations, we also adapt our methods to faithfully discretize the Euler characteristic function transform.</description><subject>Algorithms</subject><subject>Reconstruction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjrEKwjAUAIMgWLT_8MC5UJO22lHU0tGhuEqUF5vS5mleOujXq-AHON1wN9xERFKpVbLJpJyJmLlL01QWa5nnKhLVFiptQ2vGHvaWrx6DfelgyQEZCC3CCf2FGOGIni0HdAFqGqin2xMarx0b8sNCTI3uGeMf52JZHZpdndw9PUbkcO5o9O6jzt-ZoiyLLFP_VW_KgjuQ</recordid><startdate>20240213</startdate><enddate>20240213</enddate><creator>Fasy, Brittany Terese</creator><creator>Micka, Samuel</creator><creator>Millman, David L</creator><creator>Schenfisch, Anna</creator><creator>Williams, Lucia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240213</creationdate><title>A Faithful Discretization of the Verbose Persistent Homology Transform</title><author>Fasy, Brittany Terese ; Micka, Samuel ; Millman, David L ; Schenfisch, Anna ; Williams, Lucia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23316996443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Reconstruction</topic><toplevel>online_resources</toplevel><creatorcontrib>Fasy, Brittany Terese</creatorcontrib><creatorcontrib>Micka, Samuel</creatorcontrib><creatorcontrib>Millman, David L</creatorcontrib><creatorcontrib>Schenfisch, Anna</creatorcontrib><creatorcontrib>Williams, Lucia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fasy, Brittany Terese</au><au>Micka, Samuel</au><au>Millman, David L</au><au>Schenfisch, Anna</au><au>Williams, Lucia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Faithful Discretization of the Verbose Persistent Homology Transform</atitle><jtitle>arXiv.org</jtitle><date>2024-02-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The persistent homology transform (PHT) represents a shape with a multiset of persistence diagrams parameterized by the sphere of directions in the ambient space. In this work, we describe a finite set of diagrams that discretize the PHT such that it faithfully represents the underlying shape. We provide a discretization that is exponential in the dimension of the shape. Moreover, we show that this discretization is stable with respect to various perturbations and we provide an algorithm for computing the discretization. Our approach relies only on knowing the heights and dimensions of topological events, which means that it can be adapted to provide discretizations of other dimension-returning topological transforms, including the Betti function transform. With mild alterations, we also adapt our methods to faithfully discretize the Euler characteristic function transform.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2331699644 |
source | Free E- Journals |
subjects | Algorithms Reconstruction |
title | A Faithful Discretization of the Verbose Persistent Homology Transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Faithful%20Discretization%20of%20the%20Verbose%20Persistent%20Homology%20Transform&rft.jtitle=arXiv.org&rft.au=Fasy,%20Brittany%20Terese&rft.date=2024-02-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2331699644%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331699644&rft_id=info:pmid/&rfr_iscdi=true |