Learning Controllable Disentangled Representations with Decorrelation Regularization
A crucial problem in learning disentangled image representations is controlling the degree of disentanglement during image editing, while preserving the identity of objects. In this work, we propose a simple yet effective model with the encoder-decoder architecture to address this challenge. To enco...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Song, Zengjie Koyejo, Oluwasanmi Zhang, Jiangshe |
description | A crucial problem in learning disentangled image representations is controlling the degree of disentanglement during image editing, while preserving the identity of objects. In this work, we propose a simple yet effective model with the encoder-decoder architecture to address this challenge. To encourage disentanglement, we devise a distance covariance based decorrelation regularization. Further, for the reconstruction step, our model leverages a soft target representation combined with the latent image code. By exploiting the real-valued space of the soft target representations, we are able to synthesize novel images with the designated properties. We also design a classification based protocol to quantitatively evaluate the disentanglement strength of our model. Experimental results show that the proposed model competently disentangles factors of variation, and is able to manipulate face images to synthesize the desired attributes. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2331355703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331355703</sourcerecordid><originalsourceid>FETCH-proquest_journals_23313557033</originalsourceid><addsrcrecordid>eNqNjkEKwjAURIMgWLR3CLguxMRY963iwpV0X2L91pRPUn9SBE9vLR7A1fBm3mJmLJFKbbL9VsoFS0PohBByl0utVcKqMxhy1rW88C6SRzRXBF7aAC4a1yLc-AV6gomj9S7wl40PXkLjiQCnblTaAQ3Z94QrNr8bDJD-csnWx0NVnLKe_HOAEOvOD-TGqf5eU1rnQqn_rA8yKUHZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331355703</pqid></control><display><type>article</type><title>Learning Controllable Disentangled Representations with Decorrelation Regularization</title><source>Free E- Journals</source><creator>Song, Zengjie ; Koyejo, Oluwasanmi ; Zhang, Jiangshe</creator><creatorcontrib>Song, Zengjie ; Koyejo, Oluwasanmi ; Zhang, Jiangshe</creatorcontrib><description>A crucial problem in learning disentangled image representations is controlling the degree of disentanglement during image editing, while preserving the identity of objects. In this work, we propose a simple yet effective model with the encoder-decoder architecture to address this challenge. To encourage disentanglement, we devise a distance covariance based decorrelation regularization. Further, for the reconstruction step, our model leverages a soft target representation combined with the latent image code. By exploiting the real-valued space of the soft target representations, we are able to synthesize novel images with the designated properties. We also design a classification based protocol to quantitatively evaluate the disentanglement strength of our model. Experimental results show that the proposed model competently disentangles factors of variation, and is able to manipulate face images to synthesize the desired attributes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coders ; Covariance ; Encoders-Decoders ; Image classification ; Image manipulation ; Image reconstruction ; Learning ; Regularization ; Representations ; Stability ; Synthesis</subject><ispartof>arXiv.org, 2019-12</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Song, Zengjie</creatorcontrib><creatorcontrib>Koyejo, Oluwasanmi</creatorcontrib><creatorcontrib>Zhang, Jiangshe</creatorcontrib><title>Learning Controllable Disentangled Representations with Decorrelation Regularization</title><title>arXiv.org</title><description>A crucial problem in learning disentangled image representations is controlling the degree of disentanglement during image editing, while preserving the identity of objects. In this work, we propose a simple yet effective model with the encoder-decoder architecture to address this challenge. To encourage disentanglement, we devise a distance covariance based decorrelation regularization. Further, for the reconstruction step, our model leverages a soft target representation combined with the latent image code. By exploiting the real-valued space of the soft target representations, we are able to synthesize novel images with the designated properties. We also design a classification based protocol to quantitatively evaluate the disentanglement strength of our model. Experimental results show that the proposed model competently disentangles factors of variation, and is able to manipulate face images to synthesize the desired attributes.</description><subject>Coders</subject><subject>Covariance</subject><subject>Encoders-Decoders</subject><subject>Image classification</subject><subject>Image manipulation</subject><subject>Image reconstruction</subject><subject>Learning</subject><subject>Regularization</subject><subject>Representations</subject><subject>Stability</subject><subject>Synthesis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjkEKwjAURIMgWLR3CLguxMRY963iwpV0X2L91pRPUn9SBE9vLR7A1fBm3mJmLJFKbbL9VsoFS0PohBByl0utVcKqMxhy1rW88C6SRzRXBF7aAC4a1yLc-AV6gomj9S7wl40PXkLjiQCnblTaAQ3Z94QrNr8bDJD-csnWx0NVnLKe_HOAEOvOD-TGqf5eU1rnQqn_rA8yKUHZ</recordid><startdate>20191225</startdate><enddate>20191225</enddate><creator>Song, Zengjie</creator><creator>Koyejo, Oluwasanmi</creator><creator>Zhang, Jiangshe</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191225</creationdate><title>Learning Controllable Disentangled Representations with Decorrelation Regularization</title><author>Song, Zengjie ; Koyejo, Oluwasanmi ; Zhang, Jiangshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23313557033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coders</topic><topic>Covariance</topic><topic>Encoders-Decoders</topic><topic>Image classification</topic><topic>Image manipulation</topic><topic>Image reconstruction</topic><topic>Learning</topic><topic>Regularization</topic><topic>Representations</topic><topic>Stability</topic><topic>Synthesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Song, Zengjie</creatorcontrib><creatorcontrib>Koyejo, Oluwasanmi</creatorcontrib><creatorcontrib>Zhang, Jiangshe</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Zengjie</au><au>Koyejo, Oluwasanmi</au><au>Zhang, Jiangshe</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning Controllable Disentangled Representations with Decorrelation Regularization</atitle><jtitle>arXiv.org</jtitle><date>2019-12-25</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>A crucial problem in learning disentangled image representations is controlling the degree of disentanglement during image editing, while preserving the identity of objects. In this work, we propose a simple yet effective model with the encoder-decoder architecture to address this challenge. To encourage disentanglement, we devise a distance covariance based decorrelation regularization. Further, for the reconstruction step, our model leverages a soft target representation combined with the latent image code. By exploiting the real-valued space of the soft target representations, we are able to synthesize novel images with the designated properties. We also design a classification based protocol to quantitatively evaluate the disentanglement strength of our model. Experimental results show that the proposed model competently disentangles factors of variation, and is able to manipulate face images to synthesize the desired attributes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2331355703 |
source | Free E- Journals |
subjects | Coders Covariance Encoders-Decoders Image classification Image manipulation Image reconstruction Learning Regularization Representations Stability Synthesis |
title | Learning Controllable Disentangled Representations with Decorrelation Regularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning%20Controllable%20Disentangled%20Representations%20with%20Decorrelation%20Regularization&rft.jtitle=arXiv.org&rft.au=Song,%20Zengjie&rft.date=2019-12-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2331355703%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331355703&rft_id=info:pmid/&rfr_iscdi=true |