Rigorous uncertainty quantification and design with uncertain material models

We assess a method of quantification of margins and uncertainties (QMU) in applications where the main source of uncertainty is an imperfect knowledge or characterization of the material behavior. The aim of QMU is to determine adequate design margins given quantified uncertainties and a desired lev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of impact engineering 2020-02, Vol.136, p.103418, Article 103418
Hauptverfasser: Sun, X., Kirchdoerfer, T., Ortiz, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103418
container_title International journal of impact engineering
container_volume 136
creator Sun, X.
Kirchdoerfer, T.
Ortiz, M.
description We assess a method of quantification of margins and uncertainties (QMU) in applications where the main source of uncertainty is an imperfect knowledge or characterization of the material behavior. The aim of QMU is to determine adequate design margins given quantified uncertainties and a desired level of confidence in the design. We quantify uncertainties through rigorous probability bounds computed by exercising an existing deterministic code in order to sample the mean response and identify worst-case combinations of parameters. The resulting methodology is non-intrusive and can be wrapped around existing solvers. The use of rigorous probability bounds ensures that the resulting designs are conservative to within a desired level of confidence. We assess the QMU framework by means of an application concerned with sub-ballistic impact of AZ31B Mg alloy plates. We assume the design specification to be a maximum allowable backface deflection of the plate. As a simple scenario, we specifically assume that, under the conditions of interest, the plate is well-characterized by the Johnson-Cook model, but the parameters of the model are uncertain. In calculations, we use the commercial finite-element package LS-Dyna and DAKOTA Version 6.7. The assessment demonstrates the feasibility of the approach and how it results in high-confidence designs that are well-within the practical range of engineering application.
doi_str_mv 10.1016/j.ijimpeng.2019.103418
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2331217580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0734743X19308103</els_id><sourcerecordid>2331217580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-b599901ad618089ca74267baf24c520286091f903ecabce7d4fc3987dc40c99f3</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKd_QQo-d940adO8KUOnMBFEwbeQJelMWZMtSZX9ezuq-OjThcM553I-hC4xzDDg6rqd2dZ2W-PWswIwH0RCcX2EJrhmPCcl8GM0AUZozih5P0VnMbYAmEEJE_T0Ytc--D5mvVMmJGld2me7XrpkG6tkst5l0ulMm2jXLvuy6ePPmnUymWDlJuu8Npt4jk4auYnm4udO0dv93ev8IV8-Lx7nt8tcUYpTvio554ClrnANNVeS0aJiK9kUVJUFFHUFHDcciFFypQzTtFGE10wrCorzhkzR1di7DX7Xm5hE6_vghpeiIAQXmJU1DK5qdKngYwymEdtgOxn2AoM4oBOt-EUnDujEiG4I3ozBYZL5tCaIqKwZRmsbjEpCe_tfxTcijXva</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331217580</pqid></control><display><type>article</type><title>Rigorous uncertainty quantification and design with uncertain material models</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sun, X. ; Kirchdoerfer, T. ; Ortiz, M.</creator><creatorcontrib>Sun, X. ; Kirchdoerfer, T. ; Ortiz, M.</creatorcontrib><description>We assess a method of quantification of margins and uncertainties (QMU) in applications where the main source of uncertainty is an imperfect knowledge or characterization of the material behavior. The aim of QMU is to determine adequate design margins given quantified uncertainties and a desired level of confidence in the design. We quantify uncertainties through rigorous probability bounds computed by exercising an existing deterministic code in order to sample the mean response and identify worst-case combinations of parameters. The resulting methodology is non-intrusive and can be wrapped around existing solvers. The use of rigorous probability bounds ensures that the resulting designs are conservative to within a desired level of confidence. We assess the QMU framework by means of an application concerned with sub-ballistic impact of AZ31B Mg alloy plates. We assume the design specification to be a maximum allowable backface deflection of the plate. As a simple scenario, we specifically assume that, under the conditions of interest, the plate is well-characterized by the Johnson-Cook model, but the parameters of the model are uncertain. In calculations, we use the commercial finite-element package LS-Dyna and DAKOTA Version 6.7. The assessment demonstrates the feasibility of the approach and how it results in high-confidence designs that are well-within the practical range of engineering application.</description><identifier>ISSN: 0734-743X</identifier><identifier>EISSN: 1879-3509</identifier><identifier>DOI: 10.1016/j.ijimpeng.2019.103418</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>AZ31B Mg alloy ; Concentration of measure inequalities ; Design margins ; Design specifications ; Magnesium base alloys ; Mathematical models ; Metal plates ; Parameter identification ; Parameter uncertainty ; Quantification of margins and uncertainities ; Safe design ; Solvers ; Sub-ballistic impact ; Uncertainty quantification</subject><ispartof>International journal of impact engineering, 2020-02, Vol.136, p.103418, Article 103418</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-b599901ad618089ca74267baf24c520286091f903ecabce7d4fc3987dc40c99f3</citedby><cites>FETCH-LOGICAL-c441t-b599901ad618089ca74267baf24c520286091f903ecabce7d4fc3987dc40c99f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijimpeng.2019.103418$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sun, X.</creatorcontrib><creatorcontrib>Kirchdoerfer, T.</creatorcontrib><creatorcontrib>Ortiz, M.</creatorcontrib><title>Rigorous uncertainty quantification and design with uncertain material models</title><title>International journal of impact engineering</title><description>We assess a method of quantification of margins and uncertainties (QMU) in applications where the main source of uncertainty is an imperfect knowledge or characterization of the material behavior. The aim of QMU is to determine adequate design margins given quantified uncertainties and a desired level of confidence in the design. We quantify uncertainties through rigorous probability bounds computed by exercising an existing deterministic code in order to sample the mean response and identify worst-case combinations of parameters. The resulting methodology is non-intrusive and can be wrapped around existing solvers. The use of rigorous probability bounds ensures that the resulting designs are conservative to within a desired level of confidence. We assess the QMU framework by means of an application concerned with sub-ballistic impact of AZ31B Mg alloy plates. We assume the design specification to be a maximum allowable backface deflection of the plate. As a simple scenario, we specifically assume that, under the conditions of interest, the plate is well-characterized by the Johnson-Cook model, but the parameters of the model are uncertain. In calculations, we use the commercial finite-element package LS-Dyna and DAKOTA Version 6.7. The assessment demonstrates the feasibility of the approach and how it results in high-confidence designs that are well-within the practical range of engineering application.</description><subject>AZ31B Mg alloy</subject><subject>Concentration of measure inequalities</subject><subject>Design margins</subject><subject>Design specifications</subject><subject>Magnesium base alloys</subject><subject>Mathematical models</subject><subject>Metal plates</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>Quantification of margins and uncertainities</subject><subject>Safe design</subject><subject>Solvers</subject><subject>Sub-ballistic impact</subject><subject>Uncertainty quantification</subject><issn>0734-743X</issn><issn>1879-3509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKd_QQo-d940adO8KUOnMBFEwbeQJelMWZMtSZX9ezuq-OjThcM553I-hC4xzDDg6rqd2dZ2W-PWswIwH0RCcX2EJrhmPCcl8GM0AUZozih5P0VnMbYAmEEJE_T0Ytc--D5mvVMmJGld2me7XrpkG6tkst5l0ulMm2jXLvuy6ePPmnUymWDlJuu8Npt4jk4auYnm4udO0dv93ev8IV8-Lx7nt8tcUYpTvio554ClrnANNVeS0aJiK9kUVJUFFHUFHDcciFFypQzTtFGE10wrCorzhkzR1di7DX7Xm5hE6_vghpeiIAQXmJU1DK5qdKngYwymEdtgOxn2AoM4oBOt-EUnDujEiG4I3ozBYZL5tCaIqKwZRmsbjEpCe_tfxTcijXva</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Sun, X.</creator><creator>Kirchdoerfer, T.</creator><creator>Ortiz, M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20200201</creationdate><title>Rigorous uncertainty quantification and design with uncertain material models</title><author>Sun, X. ; Kirchdoerfer, T. ; Ortiz, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-b599901ad618089ca74267baf24c520286091f903ecabce7d4fc3987dc40c99f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AZ31B Mg alloy</topic><topic>Concentration of measure inequalities</topic><topic>Design margins</topic><topic>Design specifications</topic><topic>Magnesium base alloys</topic><topic>Mathematical models</topic><topic>Metal plates</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>Quantification of margins and uncertainities</topic><topic>Safe design</topic><topic>Solvers</topic><topic>Sub-ballistic impact</topic><topic>Uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, X.</creatorcontrib><creatorcontrib>Kirchdoerfer, T.</creatorcontrib><creatorcontrib>Ortiz, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of impact engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, X.</au><au>Kirchdoerfer, T.</au><au>Ortiz, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous uncertainty quantification and design with uncertain material models</atitle><jtitle>International journal of impact engineering</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>136</volume><spage>103418</spage><pages>103418-</pages><artnum>103418</artnum><issn>0734-743X</issn><eissn>1879-3509</eissn><abstract>We assess a method of quantification of margins and uncertainties (QMU) in applications where the main source of uncertainty is an imperfect knowledge or characterization of the material behavior. The aim of QMU is to determine adequate design margins given quantified uncertainties and a desired level of confidence in the design. We quantify uncertainties through rigorous probability bounds computed by exercising an existing deterministic code in order to sample the mean response and identify worst-case combinations of parameters. The resulting methodology is non-intrusive and can be wrapped around existing solvers. The use of rigorous probability bounds ensures that the resulting designs are conservative to within a desired level of confidence. We assess the QMU framework by means of an application concerned with sub-ballistic impact of AZ31B Mg alloy plates. We assume the design specification to be a maximum allowable backface deflection of the plate. As a simple scenario, we specifically assume that, under the conditions of interest, the plate is well-characterized by the Johnson-Cook model, but the parameters of the model are uncertain. In calculations, we use the commercial finite-element package LS-Dyna and DAKOTA Version 6.7. The assessment demonstrates the feasibility of the approach and how it results in high-confidence designs that are well-within the practical range of engineering application.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijimpeng.2019.103418</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0734-743X
ispartof International journal of impact engineering, 2020-02, Vol.136, p.103418, Article 103418
issn 0734-743X
1879-3509
language eng
recordid cdi_proquest_journals_2331217580
source Elsevier ScienceDirect Journals Complete
subjects AZ31B Mg alloy
Concentration of measure inequalities
Design margins
Design specifications
Magnesium base alloys
Mathematical models
Metal plates
Parameter identification
Parameter uncertainty
Quantification of margins and uncertainities
Safe design
Solvers
Sub-ballistic impact
Uncertainty quantification
title Rigorous uncertainty quantification and design with uncertain material models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20uncertainty%20quantification%20and%20design%20with%20uncertain%20material%20models&rft.jtitle=International%20journal%20of%20impact%20engineering&rft.au=Sun,%20X.&rft.date=2020-02-01&rft.volume=136&rft.spage=103418&rft.pages=103418-&rft.artnum=103418&rft.issn=0734-743X&rft.eissn=1879-3509&rft_id=info:doi/10.1016/j.ijimpeng.2019.103418&rft_dat=%3Cproquest_cross%3E2331217580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331217580&rft_id=info:pmid/&rft_els_id=S0734743X19308103&rfr_iscdi=true