Newly developed thermoplastic polyolefin encapsulant–A potential candidate for crystalline silicon photovoltaic modules encapsulation

•No significant reduction in transmittance.•No discoloration observed in fluorescence image.•Nine times slower change in yellowness index/discoloration.•Extremely low glass transition and high melt transition temperatures.•Single stage decomposition with a high thermal stability. Thermoplastic polyo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2019-12, Vol.194, p.581-588
Hauptverfasser: Adothu, Baloji, Bhatt, Parth, Chattopadhyay, Shashwata, Zele, Sarita, Oderkerk, Jeroen, Sagar, H.P., Costa, Francis Reny, Mallick, Sudhanshu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 588
container_issue
container_start_page 581
container_title Solar energy
container_volume 194
creator Adothu, Baloji
Bhatt, Parth
Chattopadhyay, Shashwata
Zele, Sarita
Oderkerk, Jeroen
Sagar, H.P.
Costa, Francis Reny
Mallick, Sudhanshu
description •No significant reduction in transmittance.•No discoloration observed in fluorescence image.•Nine times slower change in yellowness index/discoloration.•Extremely low glass transition and high melt transition temperatures.•Single stage decomposition with a high thermal stability. Thermoplastic polyolefin (TPO) is a newly developed non-crosslinking material for photovoltaic (PV) module lamination as an alternative to ethylene–vinyl-acetate (EVA) encapsulant. This article assesses its applicability as an encapsulant material. We report the results of various characterization tests for discoloration, optical, and thermal properties degradation before and after the UV accelerated test. To evaluate its weathering stability, the UV-365 acceleration test has been conducted on the glass to glass TPO laminate, with EVA as a benchmark. In 50 days of weatherability tests, the transmittance of EVA significantly reduced while TPO remained almost unchanged. The discoloration of TPO is around nine times slower than that of EVA. The analytical tools like Raman spectroscopy, fluorescent imaging, and spectra have been used to assess the degradation behavior, which indicates a clear difference between EVA and TPO based encapsulant. Thermal properties (glass and melt transitions) of TPO and EVA have been studied through heat-cool-heat cycle testing by differential scanning calorimeter (DSC). This test confirmed that TPO thermal properties remain almost unchanged, whereas EVA shows significant changes after 50 days of UV exposure. In the thermogravimetry analysis (TGA) results, we found that TPO is stable till a significantly higher temperature than EVA. Additionally, the 180° peel adhesion test suggests that TPO has a higher adhesion strength than EVA. This work will help in understanding the applicability of newly developed non-crosslinking TPO as a potential replacement for EVA for the PV modules.
doi_str_mv 10.1016/j.solener.2019.11.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2331217452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X19311089</els_id><sourcerecordid>2331217452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ba7bdabccfd820c43f7983f7f47df190cd1397b96fa9160eb328da71074d5b763</originalsourceid><addsrcrecordid>eNqFkE1qHDEQhUWwIeNxjhAQZN1tVatn1L0KxuTHYOxNDNkJtVTCGjRSR9JMmF12PoBv6JNYZgxZelO1eO99RT1CPgNrgcH6YtPm6DFgajsGYwvQMhg-kAX0AhroVuKELBjjQ8PG7vdHcpbzhjEQMIgFebzFv_5ADe7RxxkNLQ-YtnH2Khen6Rz9obKtCxSDVnPeeRXK87-nyyoVDMUpT7UKxhlVkNqYqE6HXJT3LiDNzjsdA50fYon76IuqzG00O4_5P7C4GM7JqVU-46e3vST337_9uvrZ3Nz9uL66vGk056I0kxKTUZPW1gwd0z23YhzqsL0wFkamDfBRTOPaqhHWDCfeDUYJYKI3q0ms-ZJ8OXLnFP_sMBe5ibsU6knZcQ4diH7VVdfq6NIp5pzQyjm5rUoHCUy-di438q1z-dq5BJC185r7esxhfWHvqpq1q3-icQl1kSa6dwgvDlaTvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331217452</pqid></control><display><type>article</type><title>Newly developed thermoplastic polyolefin encapsulant–A potential candidate for crystalline silicon photovoltaic modules encapsulation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Adothu, Baloji ; Bhatt, Parth ; Chattopadhyay, Shashwata ; Zele, Sarita ; Oderkerk, Jeroen ; Sagar, H.P. ; Costa, Francis Reny ; Mallick, Sudhanshu</creator><creatorcontrib>Adothu, Baloji ; Bhatt, Parth ; Chattopadhyay, Shashwata ; Zele, Sarita ; Oderkerk, Jeroen ; Sagar, H.P. ; Costa, Francis Reny ; Mallick, Sudhanshu</creatorcontrib><description>•No significant reduction in transmittance.•No discoloration observed in fluorescence image.•Nine times slower change in yellowness index/discoloration.•Extremely low glass transition and high melt transition temperatures.•Single stage decomposition with a high thermal stability. Thermoplastic polyolefin (TPO) is a newly developed non-crosslinking material for photovoltaic (PV) module lamination as an alternative to ethylene–vinyl-acetate (EVA) encapsulant. This article assesses its applicability as an encapsulant material. We report the results of various characterization tests for discoloration, optical, and thermal properties degradation before and after the UV accelerated test. To evaluate its weathering stability, the UV-365 acceleration test has been conducted on the glass to glass TPO laminate, with EVA as a benchmark. In 50 days of weatherability tests, the transmittance of EVA significantly reduced while TPO remained almost unchanged. The discoloration of TPO is around nine times slower than that of EVA. The analytical tools like Raman spectroscopy, fluorescent imaging, and spectra have been used to assess the degradation behavior, which indicates a clear difference between EVA and TPO based encapsulant. Thermal properties (glass and melt transitions) of TPO and EVA have been studied through heat-cool-heat cycle testing by differential scanning calorimeter (DSC). This test confirmed that TPO thermal properties remain almost unchanged, whereas EVA shows significant changes after 50 days of UV exposure. In the thermogravimetry analysis (TGA) results, we found that TPO is stable till a significantly higher temperature than EVA. Additionally, the 180° peel adhesion test suggests that TPO has a higher adhesion strength than EVA. This work will help in understanding the applicability of newly developed non-crosslinking TPO as a potential replacement for EVA for the PV modules.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2019.11.018</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Accelerated tests ; Acceleration ; Acetic acid ; Adhesion ; Adhesion tests ; Adhesive strength ; Crosslinking ; Degradation ; Discoloration ; Encapsulant ; Encapsulation ; Ethylene vinyl acetates ; Ethylene-vinyl-acetate ; Fluoroscopic imaging ; Glass ; High temperature ; Lamination ; Modules ; Non-crosslinking ; Olefinic thermoplastic elastomers ; Optical properties ; Photovoltaic cells ; Photovoltaic module ; Photovoltaics ; Polyolefins ; Raman spectroscopy ; Solar energy ; Spectrum analysis ; Stability analysis ; Thermal properties ; Thermodynamic properties ; Thermogravimetry ; Thermoplastic polyolefin</subject><ispartof>Solar energy, 2019-12, Vol.194, p.581-588</ispartof><rights>2019 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ba7bdabccfd820c43f7983f7f47df190cd1397b96fa9160eb328da71074d5b763</citedby><cites>FETCH-LOGICAL-c337t-ba7bdabccfd820c43f7983f7f47df190cd1397b96fa9160eb328da71074d5b763</cites><orcidid>0000-0002-9744-8746 ; 0000-0002-4013-7058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2019.11.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Adothu, Baloji</creatorcontrib><creatorcontrib>Bhatt, Parth</creatorcontrib><creatorcontrib>Chattopadhyay, Shashwata</creatorcontrib><creatorcontrib>Zele, Sarita</creatorcontrib><creatorcontrib>Oderkerk, Jeroen</creatorcontrib><creatorcontrib>Sagar, H.P.</creatorcontrib><creatorcontrib>Costa, Francis Reny</creatorcontrib><creatorcontrib>Mallick, Sudhanshu</creatorcontrib><title>Newly developed thermoplastic polyolefin encapsulant–A potential candidate for crystalline silicon photovoltaic modules encapsulation</title><title>Solar energy</title><description>•No significant reduction in transmittance.•No discoloration observed in fluorescence image.•Nine times slower change in yellowness index/discoloration.•Extremely low glass transition and high melt transition temperatures.•Single stage decomposition with a high thermal stability. Thermoplastic polyolefin (TPO) is a newly developed non-crosslinking material for photovoltaic (PV) module lamination as an alternative to ethylene–vinyl-acetate (EVA) encapsulant. This article assesses its applicability as an encapsulant material. We report the results of various characterization tests for discoloration, optical, and thermal properties degradation before and after the UV accelerated test. To evaluate its weathering stability, the UV-365 acceleration test has been conducted on the glass to glass TPO laminate, with EVA as a benchmark. In 50 days of weatherability tests, the transmittance of EVA significantly reduced while TPO remained almost unchanged. The discoloration of TPO is around nine times slower than that of EVA. The analytical tools like Raman spectroscopy, fluorescent imaging, and spectra have been used to assess the degradation behavior, which indicates a clear difference between EVA and TPO based encapsulant. Thermal properties (glass and melt transitions) of TPO and EVA have been studied through heat-cool-heat cycle testing by differential scanning calorimeter (DSC). This test confirmed that TPO thermal properties remain almost unchanged, whereas EVA shows significant changes after 50 days of UV exposure. In the thermogravimetry analysis (TGA) results, we found that TPO is stable till a significantly higher temperature than EVA. Additionally, the 180° peel adhesion test suggests that TPO has a higher adhesion strength than EVA. This work will help in understanding the applicability of newly developed non-crosslinking TPO as a potential replacement for EVA for the PV modules.</description><subject>Accelerated tests</subject><subject>Acceleration</subject><subject>Acetic acid</subject><subject>Adhesion</subject><subject>Adhesion tests</subject><subject>Adhesive strength</subject><subject>Crosslinking</subject><subject>Degradation</subject><subject>Discoloration</subject><subject>Encapsulant</subject><subject>Encapsulation</subject><subject>Ethylene vinyl acetates</subject><subject>Ethylene-vinyl-acetate</subject><subject>Fluoroscopic imaging</subject><subject>Glass</subject><subject>High temperature</subject><subject>Lamination</subject><subject>Modules</subject><subject>Non-crosslinking</subject><subject>Olefinic thermoplastic elastomers</subject><subject>Optical properties</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic module</subject><subject>Photovoltaics</subject><subject>Polyolefins</subject><subject>Raman spectroscopy</subject><subject>Solar energy</subject><subject>Spectrum analysis</subject><subject>Stability analysis</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetry</subject><subject>Thermoplastic polyolefin</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1qHDEQhUWwIeNxjhAQZN1tVatn1L0KxuTHYOxNDNkJtVTCGjRSR9JMmF12PoBv6JNYZgxZelO1eO99RT1CPgNrgcH6YtPm6DFgajsGYwvQMhg-kAX0AhroVuKELBjjQ8PG7vdHcpbzhjEQMIgFebzFv_5ADe7RxxkNLQ-YtnH2Khen6Rz9obKtCxSDVnPeeRXK87-nyyoVDMUpT7UKxhlVkNqYqE6HXJT3LiDNzjsdA50fYon76IuqzG00O4_5P7C4GM7JqVU-46e3vST337_9uvrZ3Nz9uL66vGk056I0kxKTUZPW1gwd0z23YhzqsL0wFkamDfBRTOPaqhHWDCfeDUYJYKI3q0ms-ZJ8OXLnFP_sMBe5ibsU6knZcQ4diH7VVdfq6NIp5pzQyjm5rUoHCUy-di438q1z-dq5BJC185r7esxhfWHvqpq1q3-icQl1kSa6dwgvDlaTvg</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Adothu, Baloji</creator><creator>Bhatt, Parth</creator><creator>Chattopadhyay, Shashwata</creator><creator>Zele, Sarita</creator><creator>Oderkerk, Jeroen</creator><creator>Sagar, H.P.</creator><creator>Costa, Francis Reny</creator><creator>Mallick, Sudhanshu</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9744-8746</orcidid><orcidid>https://orcid.org/0000-0002-4013-7058</orcidid></search><sort><creationdate>201912</creationdate><title>Newly developed thermoplastic polyolefin encapsulant–A potential candidate for crystalline silicon photovoltaic modules encapsulation</title><author>Adothu, Baloji ; Bhatt, Parth ; Chattopadhyay, Shashwata ; Zele, Sarita ; Oderkerk, Jeroen ; Sagar, H.P. ; Costa, Francis Reny ; Mallick, Sudhanshu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ba7bdabccfd820c43f7983f7f47df190cd1397b96fa9160eb328da71074d5b763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accelerated tests</topic><topic>Acceleration</topic><topic>Acetic acid</topic><topic>Adhesion</topic><topic>Adhesion tests</topic><topic>Adhesive strength</topic><topic>Crosslinking</topic><topic>Degradation</topic><topic>Discoloration</topic><topic>Encapsulant</topic><topic>Encapsulation</topic><topic>Ethylene vinyl acetates</topic><topic>Ethylene-vinyl-acetate</topic><topic>Fluoroscopic imaging</topic><topic>Glass</topic><topic>High temperature</topic><topic>Lamination</topic><topic>Modules</topic><topic>Non-crosslinking</topic><topic>Olefinic thermoplastic elastomers</topic><topic>Optical properties</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic module</topic><topic>Photovoltaics</topic><topic>Polyolefins</topic><topic>Raman spectroscopy</topic><topic>Solar energy</topic><topic>Spectrum analysis</topic><topic>Stability analysis</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetry</topic><topic>Thermoplastic polyolefin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adothu, Baloji</creatorcontrib><creatorcontrib>Bhatt, Parth</creatorcontrib><creatorcontrib>Chattopadhyay, Shashwata</creatorcontrib><creatorcontrib>Zele, Sarita</creatorcontrib><creatorcontrib>Oderkerk, Jeroen</creatorcontrib><creatorcontrib>Sagar, H.P.</creatorcontrib><creatorcontrib>Costa, Francis Reny</creatorcontrib><creatorcontrib>Mallick, Sudhanshu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adothu, Baloji</au><au>Bhatt, Parth</au><au>Chattopadhyay, Shashwata</au><au>Zele, Sarita</au><au>Oderkerk, Jeroen</au><au>Sagar, H.P.</au><au>Costa, Francis Reny</au><au>Mallick, Sudhanshu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Newly developed thermoplastic polyolefin encapsulant–A potential candidate for crystalline silicon photovoltaic modules encapsulation</atitle><jtitle>Solar energy</jtitle><date>2019-12</date><risdate>2019</risdate><volume>194</volume><spage>581</spage><epage>588</epage><pages>581-588</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•No significant reduction in transmittance.•No discoloration observed in fluorescence image.•Nine times slower change in yellowness index/discoloration.•Extremely low glass transition and high melt transition temperatures.•Single stage decomposition with a high thermal stability. Thermoplastic polyolefin (TPO) is a newly developed non-crosslinking material for photovoltaic (PV) module lamination as an alternative to ethylene–vinyl-acetate (EVA) encapsulant. This article assesses its applicability as an encapsulant material. We report the results of various characterization tests for discoloration, optical, and thermal properties degradation before and after the UV accelerated test. To evaluate its weathering stability, the UV-365 acceleration test has been conducted on the glass to glass TPO laminate, with EVA as a benchmark. In 50 days of weatherability tests, the transmittance of EVA significantly reduced while TPO remained almost unchanged. The discoloration of TPO is around nine times slower than that of EVA. The analytical tools like Raman spectroscopy, fluorescent imaging, and spectra have been used to assess the degradation behavior, which indicates a clear difference between EVA and TPO based encapsulant. Thermal properties (glass and melt transitions) of TPO and EVA have been studied through heat-cool-heat cycle testing by differential scanning calorimeter (DSC). This test confirmed that TPO thermal properties remain almost unchanged, whereas EVA shows significant changes after 50 days of UV exposure. In the thermogravimetry analysis (TGA) results, we found that TPO is stable till a significantly higher temperature than EVA. Additionally, the 180° peel adhesion test suggests that TPO has a higher adhesion strength than EVA. This work will help in understanding the applicability of newly developed non-crosslinking TPO as a potential replacement for EVA for the PV modules.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2019.11.018</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9744-8746</orcidid><orcidid>https://orcid.org/0000-0002-4013-7058</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2019-12, Vol.194, p.581-588
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_2331217452
source Access via ScienceDirect (Elsevier)
subjects Accelerated tests
Acceleration
Acetic acid
Adhesion
Adhesion tests
Adhesive strength
Crosslinking
Degradation
Discoloration
Encapsulant
Encapsulation
Ethylene vinyl acetates
Ethylene-vinyl-acetate
Fluoroscopic imaging
Glass
High temperature
Lamination
Modules
Non-crosslinking
Olefinic thermoplastic elastomers
Optical properties
Photovoltaic cells
Photovoltaic module
Photovoltaics
Polyolefins
Raman spectroscopy
Solar energy
Spectrum analysis
Stability analysis
Thermal properties
Thermodynamic properties
Thermogravimetry
Thermoplastic polyolefin
title Newly developed thermoplastic polyolefin encapsulant–A potential candidate for crystalline silicon photovoltaic modules encapsulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Newly%20developed%20thermoplastic%20polyolefin%20encapsulant%E2%80%93A%20potential%20candidate%20for%20crystalline%20silicon%20photovoltaic%20modules%20encapsulation&rft.jtitle=Solar%20energy&rft.au=Adothu,%20Baloji&rft.date=2019-12&rft.volume=194&rft.spage=581&rft.epage=588&rft.pages=581-588&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2019.11.018&rft_dat=%3Cproquest_cross%3E2331217452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331217452&rft_id=info:pmid/&rft_els_id=S0038092X19311089&rfr_iscdi=true