Jet Penetration Effect of an Inward-Cutting Circular Shaped Charge with Different Number of Detonation Points
The breach of a steel column target (Steel 45, 120 mm in diameter) by an inward-cutting circular shaped charge is considered. The jet penetration process is simulated by a 3D model run in the ANSYS/LS-DYNA program. The results are compared with actual tests, where photographs of the jet penetration...
Gespeichert in:
Veröffentlicht in: | Combustion, explosion, and shock waves explosion, and shock waves, 2019-11, Vol.55 (6), p.750-758 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 758 |
---|---|
container_issue | 6 |
container_start_page | 750 |
container_title | Combustion, explosion, and shock waves |
container_volume | 55 |
creator | Wu, Sh.-Zh Fang, X.-A. Li, Y.-Ch Gao, Zh.-R. Liu, Q.-A. Liu, J.-Q. Xu, J.-L. Gu, W.-B. |
description | The breach of a steel column target (Steel 45, 120 mm in diameter) by an inward-cutting circular shaped charge is considered. The jet penetration process is simulated by a 3D model run in the ANSYS/LS-DYNA program. The results are compared with actual tests, where photographs of the jet penetration process allowed observation of detonation forms, timing of the jets arising at the cross section of the detonation points, and detonation wave collision points. Different penetration effects are observed with 2-, 4-, or 8-point symmetrical synchronous initiation of detonation. With 2-point initiation, the circular-shaped charge can basically cut off the steel column target, but 4- and 8-point initiation is more effective. A greater number of detonation points provides more detonation wave collision points, higher jet velocity, earlier jet-target contact, greater penetration depth, and more rapid cutting of the target. |
doi_str_mv | 10.1134/S0010508219060182 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330975856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330975856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-8164cdfb548cd6b65ef913ee859ba5d0b0454d90b6a4a8cb701d4d795bf538013</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOH_8Ad4CnqtfmqRNj9JNnQwdTM8laZKtY0tnkjL8722p4EE8fYf3fZ4PXoRuCNwRQtn9CoAAB5GSAjIgIj1BE8JzmgjK-CmaDHEy5OfoIoQtAKQpyyZo_2IiXhpnopexaR2eWWvqiFuLpcNzd5ReJ2UXY-PWuGx83e2kx6uNPBiNy430a4OPTdzgadOD3riIX7u9Mn4wTE1s3ahdto2L4QqdWbkL5vrnXqKPx9l7-Zws3p7m5cMiqdNMxESQjNXaKs5ErTOVcWMLQo0RvFCSa1DAONMFqEwyKWqVA9FM5wVXllMBhF6i29F78O1nZ0Kstm3nXf-ySimFIueCZ32LjK3atyF4Y6uDb_bSf1UEqmHV6s-qPZOOTOi7bm38r_l_6BtcmHj3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330975856</pqid></control><display><type>article</type><title>Jet Penetration Effect of an Inward-Cutting Circular Shaped Charge with Different Number of Detonation Points</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Sh.-Zh ; Fang, X.-A. ; Li, Y.-Ch ; Gao, Zh.-R. ; Liu, Q.-A. ; Liu, J.-Q. ; Xu, J.-L. ; Gu, W.-B.</creator><creatorcontrib>Wu, Sh.-Zh ; Fang, X.-A. ; Li, Y.-Ch ; Gao, Zh.-R. ; Liu, Q.-A. ; Liu, J.-Q. ; Xu, J.-L. ; Gu, W.-B.</creatorcontrib><description>The breach of a steel column target (Steel 45, 120 mm in diameter) by an inward-cutting circular shaped charge is considered. The jet penetration process is simulated by a 3D model run in the ANSYS/LS-DYNA program. The results are compared with actual tests, where photographs of the jet penetration process allowed observation of detonation forms, timing of the jets arising at the cross section of the detonation points, and detonation wave collision points. Different penetration effects are observed with 2-, 4-, or 8-point symmetrical synchronous initiation of detonation. With 2-point initiation, the circular-shaped charge can basically cut off the steel column target, but 4- and 8-point initiation is more effective. A greater number of detonation points provides more detonation wave collision points, higher jet velocity, earlier jet-target contact, greater penetration depth, and more rapid cutting of the target.</description><identifier>ISSN: 0010-5082</identifier><identifier>EISSN: 1573-8345</identifier><identifier>DOI: 10.1134/S0010508219060182</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CAD ; Circularity ; Classical and Continuum Physics ; Classical Mechanics ; Computer aided design ; Computer simulation ; Control ; Cutting parameters ; Detonation waves ; Dynamical Systems ; Engineering ; Penetration depth ; Physical Chemistry ; Physics ; Physics and Astronomy ; Steel columns ; Three dimensional models ; Vibration</subject><ispartof>Combustion, explosion, and shock waves, 2019-11, Vol.55 (6), p.750-758</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-8164cdfb548cd6b65ef913ee859ba5d0b0454d90b6a4a8cb701d4d795bf538013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0010508219060182$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0010508219060182$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Sh.-Zh</creatorcontrib><creatorcontrib>Fang, X.-A.</creatorcontrib><creatorcontrib>Li, Y.-Ch</creatorcontrib><creatorcontrib>Gao, Zh.-R.</creatorcontrib><creatorcontrib>Liu, Q.-A.</creatorcontrib><creatorcontrib>Liu, J.-Q.</creatorcontrib><creatorcontrib>Xu, J.-L.</creatorcontrib><creatorcontrib>Gu, W.-B.</creatorcontrib><title>Jet Penetration Effect of an Inward-Cutting Circular Shaped Charge with Different Number of Detonation Points</title><title>Combustion, explosion, and shock waves</title><addtitle>Combust Explos Shock Waves</addtitle><description>The breach of a steel column target (Steel 45, 120 mm in diameter) by an inward-cutting circular shaped charge is considered. The jet penetration process is simulated by a 3D model run in the ANSYS/LS-DYNA program. The results are compared with actual tests, where photographs of the jet penetration process allowed observation of detonation forms, timing of the jets arising at the cross section of the detonation points, and detonation wave collision points. Different penetration effects are observed with 2-, 4-, or 8-point symmetrical synchronous initiation of detonation. With 2-point initiation, the circular-shaped charge can basically cut off the steel column target, but 4- and 8-point initiation is more effective. A greater number of detonation points provides more detonation wave collision points, higher jet velocity, earlier jet-target contact, greater penetration depth, and more rapid cutting of the target.</description><subject>CAD</subject><subject>Circularity</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Computer aided design</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Cutting parameters</subject><subject>Detonation waves</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Penetration depth</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Steel columns</subject><subject>Three dimensional models</subject><subject>Vibration</subject><issn>0010-5082</issn><issn>1573-8345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoOH_8Ad4CnqtfmqRNj9JNnQwdTM8laZKtY0tnkjL8722p4EE8fYf3fZ4PXoRuCNwRQtn9CoAAB5GSAjIgIj1BE8JzmgjK-CmaDHEy5OfoIoQtAKQpyyZo_2IiXhpnopexaR2eWWvqiFuLpcNzd5ReJ2UXY-PWuGx83e2kx6uNPBiNy430a4OPTdzgadOD3riIX7u9Mn4wTE1s3ahdto2L4QqdWbkL5vrnXqKPx9l7-Zws3p7m5cMiqdNMxESQjNXaKs5ErTOVcWMLQo0RvFCSa1DAONMFqEwyKWqVA9FM5wVXllMBhF6i29F78O1nZ0Kstm3nXf-ySimFIueCZ32LjK3atyF4Y6uDb_bSf1UEqmHV6s-qPZOOTOi7bm38r_l_6BtcmHj3</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Wu, Sh.-Zh</creator><creator>Fang, X.-A.</creator><creator>Li, Y.-Ch</creator><creator>Gao, Zh.-R.</creator><creator>Liu, Q.-A.</creator><creator>Liu, J.-Q.</creator><creator>Xu, J.-L.</creator><creator>Gu, W.-B.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Jet Penetration Effect of an Inward-Cutting Circular Shaped Charge with Different Number of Detonation Points</title><author>Wu, Sh.-Zh ; Fang, X.-A. ; Li, Y.-Ch ; Gao, Zh.-R. ; Liu, Q.-A. ; Liu, J.-Q. ; Xu, J.-L. ; Gu, W.-B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-8164cdfb548cd6b65ef913ee859ba5d0b0454d90b6a4a8cb701d4d795bf538013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CAD</topic><topic>Circularity</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Computer aided design</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Cutting parameters</topic><topic>Detonation waves</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Penetration depth</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Steel columns</topic><topic>Three dimensional models</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Sh.-Zh</creatorcontrib><creatorcontrib>Fang, X.-A.</creatorcontrib><creatorcontrib>Li, Y.-Ch</creatorcontrib><creatorcontrib>Gao, Zh.-R.</creatorcontrib><creatorcontrib>Liu, Q.-A.</creatorcontrib><creatorcontrib>Liu, J.-Q.</creatorcontrib><creatorcontrib>Xu, J.-L.</creatorcontrib><creatorcontrib>Gu, W.-B.</creatorcontrib><collection>CrossRef</collection><jtitle>Combustion, explosion, and shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Sh.-Zh</au><au>Fang, X.-A.</au><au>Li, Y.-Ch</au><au>Gao, Zh.-R.</au><au>Liu, Q.-A.</au><au>Liu, J.-Q.</au><au>Xu, J.-L.</au><au>Gu, W.-B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jet Penetration Effect of an Inward-Cutting Circular Shaped Charge with Different Number of Detonation Points</atitle><jtitle>Combustion, explosion, and shock waves</jtitle><stitle>Combust Explos Shock Waves</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>55</volume><issue>6</issue><spage>750</spage><epage>758</epage><pages>750-758</pages><issn>0010-5082</issn><eissn>1573-8345</eissn><abstract>The breach of a steel column target (Steel 45, 120 mm in diameter) by an inward-cutting circular shaped charge is considered. The jet penetration process is simulated by a 3D model run in the ANSYS/LS-DYNA program. The results are compared with actual tests, where photographs of the jet penetration process allowed observation of detonation forms, timing of the jets arising at the cross section of the detonation points, and detonation wave collision points. Different penetration effects are observed with 2-, 4-, or 8-point symmetrical synchronous initiation of detonation. With 2-point initiation, the circular-shaped charge can basically cut off the steel column target, but 4- and 8-point initiation is more effective. A greater number of detonation points provides more detonation wave collision points, higher jet velocity, earlier jet-target contact, greater penetration depth, and more rapid cutting of the target.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0010508219060182</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-5082 |
ispartof | Combustion, explosion, and shock waves, 2019-11, Vol.55 (6), p.750-758 |
issn | 0010-5082 1573-8345 |
language | eng |
recordid | cdi_proquest_journals_2330975856 |
source | SpringerLink Journals - AutoHoldings |
subjects | CAD Circularity Classical and Continuum Physics Classical Mechanics Computer aided design Computer simulation Control Cutting parameters Detonation waves Dynamical Systems Engineering Penetration depth Physical Chemistry Physics Physics and Astronomy Steel columns Three dimensional models Vibration |
title | Jet Penetration Effect of an Inward-Cutting Circular Shaped Charge with Different Number of Detonation Points |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jet%20Penetration%20Effect%20of%20an%20Inward-Cutting%20Circular%20Shaped%20Charge%20with%20Different%20Number%20of%20Detonation%20Points&rft.jtitle=Combustion,%20explosion,%20and%20shock%20waves&rft.au=Wu,%20Sh.-Zh&rft.date=2019-11-01&rft.volume=55&rft.issue=6&rft.spage=750&rft.epage=758&rft.pages=750-758&rft.issn=0010-5082&rft.eissn=1573-8345&rft_id=info:doi/10.1134/S0010508219060182&rft_dat=%3Cproquest_cross%3E2330975856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330975856&rft_id=info:pmid/&rfr_iscdi=true |