A mathematical model based on unstructured mesh for ice accretion
This paper proposes a three-dimensional model to simulate ice accretion on the surface of an aircraft. The model is developed using a prism grid cell, which enables iterations with an unstructured mesh. The model assumes that the impinged water droplets on the surface can form a thin water film, and...
Gespeichert in:
Veröffentlicht in: | AIP advances 2019-12, Vol.9 (12), p.125149-125149-9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125149-9 |
---|---|
container_issue | 12 |
container_start_page | 125149 |
container_title | AIP advances |
container_volume | 9 |
creator | Chen, Ningli Hu, Yaping Ji, Honghu Cao, Guangzhou Yuan, Yongqing |
description | This paper proposes a three-dimensional model to simulate ice accretion on the surface of an aircraft. The model is developed using a prism grid cell, which enables iterations with an unstructured mesh. The model assumes that the impinged water droplets on the surface can form a thin water film, and ice accretion is caused by the flow and solidification of the film. The model is developed by analyzing the conservations of mass, momentum, and energy for the thin water film on the surface. The mass and energy conservation equations of the water film are discretized on the prism grid cell, while the momentum conservation equation, which is simplified using lubrication theory, is integrated along the surface normal direction to obtain an analytical solution for the film velocity. The thicknesses of the water film and ice layer are calculated by iterating the discretized mass and energy conservation equations with the analytical solution of the film velocity. The model is verified by comparing its results with published experimental and numerical data. The results show that the model provides accurate predictions of ice accretion under different conditions, even when using an unstructured grid. |
doi_str_mv | 10.1063/1.5127235 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2330854142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_36628ad06a19409aaa96f629c1d0ab12</doaj_id><sourcerecordid>2330854142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-ab1a2da3292e5276816201d6c00902f8ee99cdc23bf5df53061530c7a8f8fb993</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGoP_oMFTwpbk8lumhxL8aNQ8KLnMM2H3bJtarIr-O9NrVRBcA4zSXh4581LyCWjY0YFv2XjmsEEeH1CBsBqWXIAcfrrfE5GKa1prkoxKqsBmU6LDXYrl1tjsC02wbq2WGJytgjbot-mLvam62O-b1xaFT7EojGuQGOi65qwvSBnHtvkRt9zSF7u755nj-Xi6WE-my5KU4HsSlwyBIscFLgaJkIyAZRZYShVFLx0TiljDfClr62vORUsNzNB6aVfKsWHZH7QtQHXehebDcYPHbDRXw8hvmqM-ROt01wIkGipQKYqqhBRCS9AGWZp9gFZ6-qgtYvhrXep0-vQx222r4FzKuuKVXvq-kCZGFKKzh-3Mqr3gWumvwPP7M2BTabpcJ_LEX4P8QfUO-v_g_8qfwKoUYv6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330854142</pqid></control><display><type>article</type><title>A mathematical model based on unstructured mesh for ice accretion</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Ningli ; Hu, Yaping ; Ji, Honghu ; Cao, Guangzhou ; Yuan, Yongqing</creator><creatorcontrib>Chen, Ningli ; Hu, Yaping ; Ji, Honghu ; Cao, Guangzhou ; Yuan, Yongqing</creatorcontrib><description>This paper proposes a three-dimensional model to simulate ice accretion on the surface of an aircraft. The model is developed using a prism grid cell, which enables iterations with an unstructured mesh. The model assumes that the impinged water droplets on the surface can form a thin water film, and ice accretion is caused by the flow and solidification of the film. The model is developed by analyzing the conservations of mass, momentum, and energy for the thin water film on the surface. The mass and energy conservation equations of the water film are discretized on the prism grid cell, while the momentum conservation equation, which is simplified using lubrication theory, is integrated along the surface normal direction to obtain an analytical solution for the film velocity. The thicknesses of the water film and ice layer are calculated by iterating the discretized mass and energy conservation equations with the analytical solution of the film velocity. The model is verified by comparing its results with published experimental and numerical data. The results show that the model provides accurate predictions of ice accretion under different conditions, even when using an unstructured grid.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5127235</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computer simulation ; Conservation equations ; Discretization ; Energy conservation ; Exact solutions ; Finite element method ; Ice accumulation ; Lubrication ; Mathematical models ; Momentum ; Solidification ; Thickness ; Three dimensional models ; Unstructured grids (mathematics) ; Water conservation ; Water drops ; Water film</subject><ispartof>AIP advances, 2019-12, Vol.9 (12), p.125149-125149-9</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-ab1a2da3292e5276816201d6c00902f8ee99cdc23bf5df53061530c7a8f8fb993</citedby><cites>FETCH-LOGICAL-c428t-ab1a2da3292e5276816201d6c00902f8ee99cdc23bf5df53061530c7a8f8fb993</cites><orcidid>0000-0003-1723-4690 ; 0000-0003-4601-6764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,2098,27911,27912</link.rule.ids></links><search><creatorcontrib>Chen, Ningli</creatorcontrib><creatorcontrib>Hu, Yaping</creatorcontrib><creatorcontrib>Ji, Honghu</creatorcontrib><creatorcontrib>Cao, Guangzhou</creatorcontrib><creatorcontrib>Yuan, Yongqing</creatorcontrib><title>A mathematical model based on unstructured mesh for ice accretion</title><title>AIP advances</title><description>This paper proposes a three-dimensional model to simulate ice accretion on the surface of an aircraft. The model is developed using a prism grid cell, which enables iterations with an unstructured mesh. The model assumes that the impinged water droplets on the surface can form a thin water film, and ice accretion is caused by the flow and solidification of the film. The model is developed by analyzing the conservations of mass, momentum, and energy for the thin water film on the surface. The mass and energy conservation equations of the water film are discretized on the prism grid cell, while the momentum conservation equation, which is simplified using lubrication theory, is integrated along the surface normal direction to obtain an analytical solution for the film velocity. The thicknesses of the water film and ice layer are calculated by iterating the discretized mass and energy conservation equations with the analytical solution of the film velocity. The model is verified by comparing its results with published experimental and numerical data. The results show that the model provides accurate predictions of ice accretion under different conditions, even when using an unstructured grid.</description><subject>Computer simulation</subject><subject>Conservation equations</subject><subject>Discretization</subject><subject>Energy conservation</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Ice accumulation</subject><subject>Lubrication</subject><subject>Mathematical models</subject><subject>Momentum</subject><subject>Solidification</subject><subject>Thickness</subject><subject>Three dimensional models</subject><subject>Unstructured grids (mathematics)</subject><subject>Water conservation</subject><subject>Water drops</subject><subject>Water film</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhoMoWGoP_oMFTwpbk8lumhxL8aNQ8KLnMM2H3bJtarIr-O9NrVRBcA4zSXh4581LyCWjY0YFv2XjmsEEeH1CBsBqWXIAcfrrfE5GKa1prkoxKqsBmU6LDXYrl1tjsC02wbq2WGJytgjbot-mLvam62O-b1xaFT7EojGuQGOi65qwvSBnHtvkRt9zSF7u755nj-Xi6WE-my5KU4HsSlwyBIscFLgaJkIyAZRZYShVFLx0TiljDfClr62vORUsNzNB6aVfKsWHZH7QtQHXehebDcYPHbDRXw8hvmqM-ROt01wIkGipQKYqqhBRCS9AGWZp9gFZ6-qgtYvhrXep0-vQx222r4FzKuuKVXvq-kCZGFKKzh-3Mqr3gWumvwPP7M2BTabpcJ_LEX4P8QfUO-v_g_8qfwKoUYv6</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Chen, Ningli</creator><creator>Hu, Yaping</creator><creator>Ji, Honghu</creator><creator>Cao, Guangzhou</creator><creator>Yuan, Yongqing</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1723-4690</orcidid><orcidid>https://orcid.org/0000-0003-4601-6764</orcidid></search><sort><creationdate>20191201</creationdate><title>A mathematical model based on unstructured mesh for ice accretion</title><author>Chen, Ningli ; Hu, Yaping ; Ji, Honghu ; Cao, Guangzhou ; Yuan, Yongqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-ab1a2da3292e5276816201d6c00902f8ee99cdc23bf5df53061530c7a8f8fb993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Conservation equations</topic><topic>Discretization</topic><topic>Energy conservation</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Ice accumulation</topic><topic>Lubrication</topic><topic>Mathematical models</topic><topic>Momentum</topic><topic>Solidification</topic><topic>Thickness</topic><topic>Three dimensional models</topic><topic>Unstructured grids (mathematics)</topic><topic>Water conservation</topic><topic>Water drops</topic><topic>Water film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ningli</creatorcontrib><creatorcontrib>Hu, Yaping</creatorcontrib><creatorcontrib>Ji, Honghu</creatorcontrib><creatorcontrib>Cao, Guangzhou</creatorcontrib><creatorcontrib>Yuan, Yongqing</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ningli</au><au>Hu, Yaping</au><au>Ji, Honghu</au><au>Cao, Guangzhou</au><au>Yuan, Yongqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model based on unstructured mesh for ice accretion</atitle><jtitle>AIP advances</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>9</volume><issue>12</issue><spage>125149</spage><epage>125149-9</epage><pages>125149-125149-9</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>This paper proposes a three-dimensional model to simulate ice accretion on the surface of an aircraft. The model is developed using a prism grid cell, which enables iterations with an unstructured mesh. The model assumes that the impinged water droplets on the surface can form a thin water film, and ice accretion is caused by the flow and solidification of the film. The model is developed by analyzing the conservations of mass, momentum, and energy for the thin water film on the surface. The mass and energy conservation equations of the water film are discretized on the prism grid cell, while the momentum conservation equation, which is simplified using lubrication theory, is integrated along the surface normal direction to obtain an analytical solution for the film velocity. The thicknesses of the water film and ice layer are calculated by iterating the discretized mass and energy conservation equations with the analytical solution of the film velocity. The model is verified by comparing its results with published experimental and numerical data. The results show that the model provides accurate predictions of ice accretion under different conditions, even when using an unstructured grid.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5127235</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1723-4690</orcidid><orcidid>https://orcid.org/0000-0003-4601-6764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2019-12, Vol.9 (12), p.125149-125149-9 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_proquest_journals_2330854142 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Computer simulation Conservation equations Discretization Energy conservation Exact solutions Finite element method Ice accumulation Lubrication Mathematical models Momentum Solidification Thickness Three dimensional models Unstructured grids (mathematics) Water conservation Water drops Water film |
title | A mathematical model based on unstructured mesh for ice accretion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20based%20on%20unstructured%20mesh%20for%20ice%20accretion&rft.jtitle=AIP%20advances&rft.au=Chen,%20Ningli&rft.date=2019-12-01&rft.volume=9&rft.issue=12&rft.spage=125149&rft.epage=125149-9&rft.pages=125149-125149-9&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5127235&rft_dat=%3Cproquest_scita%3E2330854142%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330854142&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_36628ad06a19409aaa96f629c1d0ab12&rfr_iscdi=true |