A mathematical model based on unstructured mesh for ice accretion

This paper proposes a three-dimensional model to simulate ice accretion on the surface of an aircraft. The model is developed using a prism grid cell, which enables iterations with an unstructured mesh. The model assumes that the impinged water droplets on the surface can form a thin water film, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2019-12, Vol.9 (12), p.125149-125149-9
Hauptverfasser: Chen, Ningli, Hu, Yaping, Ji, Honghu, Cao, Guangzhou, Yuan, Yongqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125149-9
container_issue 12
container_start_page 125149
container_title AIP advances
container_volume 9
creator Chen, Ningli
Hu, Yaping
Ji, Honghu
Cao, Guangzhou
Yuan, Yongqing
description This paper proposes a three-dimensional model to simulate ice accretion on the surface of an aircraft. The model is developed using a prism grid cell, which enables iterations with an unstructured mesh. The model assumes that the impinged water droplets on the surface can form a thin water film, and ice accretion is caused by the flow and solidification of the film. The model is developed by analyzing the conservations of mass, momentum, and energy for the thin water film on the surface. The mass and energy conservation equations of the water film are discretized on the prism grid cell, while the momentum conservation equation, which is simplified using lubrication theory, is integrated along the surface normal direction to obtain an analytical solution for the film velocity. The thicknesses of the water film and ice layer are calculated by iterating the discretized mass and energy conservation equations with the analytical solution of the film velocity. The model is verified by comparing its results with published experimental and numerical data. The results show that the model provides accurate predictions of ice accretion under different conditions, even when using an unstructured grid.
doi_str_mv 10.1063/1.5127235
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2330854142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_36628ad06a19409aaa96f629c1d0ab12</doaj_id><sourcerecordid>2330854142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-ab1a2da3292e5276816201d6c00902f8ee99cdc23bf5df53061530c7a8f8fb993</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGoP_oMFTwpbk8lumhxL8aNQ8KLnMM2H3bJtarIr-O9NrVRBcA4zSXh4581LyCWjY0YFv2XjmsEEeH1CBsBqWXIAcfrrfE5GKa1prkoxKqsBmU6LDXYrl1tjsC02wbq2WGJytgjbot-mLvam62O-b1xaFT7EojGuQGOi65qwvSBnHtvkRt9zSF7u755nj-Xi6WE-my5KU4HsSlwyBIscFLgaJkIyAZRZYShVFLx0TiljDfClr62vORUsNzNB6aVfKsWHZH7QtQHXehebDcYPHbDRXw8hvmqM-ROt01wIkGipQKYqqhBRCS9AGWZp9gFZ6-qgtYvhrXep0-vQx222r4FzKuuKVXvq-kCZGFKKzh-3Mqr3gWumvwPP7M2BTabpcJ_LEX4P8QfUO-v_g_8qfwKoUYv6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330854142</pqid></control><display><type>article</type><title>A mathematical model based on unstructured mesh for ice accretion</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Ningli ; Hu, Yaping ; Ji, Honghu ; Cao, Guangzhou ; Yuan, Yongqing</creator><creatorcontrib>Chen, Ningli ; Hu, Yaping ; Ji, Honghu ; Cao, Guangzhou ; Yuan, Yongqing</creatorcontrib><description>This paper proposes a three-dimensional model to simulate ice accretion on the surface of an aircraft. The model is developed using a prism grid cell, which enables iterations with an unstructured mesh. The model assumes that the impinged water droplets on the surface can form a thin water film, and ice accretion is caused by the flow and solidification of the film. The model is developed by analyzing the conservations of mass, momentum, and energy for the thin water film on the surface. The mass and energy conservation equations of the water film are discretized on the prism grid cell, while the momentum conservation equation, which is simplified using lubrication theory, is integrated along the surface normal direction to obtain an analytical solution for the film velocity. The thicknesses of the water film and ice layer are calculated by iterating the discretized mass and energy conservation equations with the analytical solution of the film velocity. The model is verified by comparing its results with published experimental and numerical data. The results show that the model provides accurate predictions of ice accretion under different conditions, even when using an unstructured grid.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5127235</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computer simulation ; Conservation equations ; Discretization ; Energy conservation ; Exact solutions ; Finite element method ; Ice accumulation ; Lubrication ; Mathematical models ; Momentum ; Solidification ; Thickness ; Three dimensional models ; Unstructured grids (mathematics) ; Water conservation ; Water drops ; Water film</subject><ispartof>AIP advances, 2019-12, Vol.9 (12), p.125149-125149-9</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-ab1a2da3292e5276816201d6c00902f8ee99cdc23bf5df53061530c7a8f8fb993</citedby><cites>FETCH-LOGICAL-c428t-ab1a2da3292e5276816201d6c00902f8ee99cdc23bf5df53061530c7a8f8fb993</cites><orcidid>0000-0003-1723-4690 ; 0000-0003-4601-6764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,2098,27911,27912</link.rule.ids></links><search><creatorcontrib>Chen, Ningli</creatorcontrib><creatorcontrib>Hu, Yaping</creatorcontrib><creatorcontrib>Ji, Honghu</creatorcontrib><creatorcontrib>Cao, Guangzhou</creatorcontrib><creatorcontrib>Yuan, Yongqing</creatorcontrib><title>A mathematical model based on unstructured mesh for ice accretion</title><title>AIP advances</title><description>This paper proposes a three-dimensional model to simulate ice accretion on the surface of an aircraft. The model is developed using a prism grid cell, which enables iterations with an unstructured mesh. The model assumes that the impinged water droplets on the surface can form a thin water film, and ice accretion is caused by the flow and solidification of the film. The model is developed by analyzing the conservations of mass, momentum, and energy for the thin water film on the surface. The mass and energy conservation equations of the water film are discretized on the prism grid cell, while the momentum conservation equation, which is simplified using lubrication theory, is integrated along the surface normal direction to obtain an analytical solution for the film velocity. The thicknesses of the water film and ice layer are calculated by iterating the discretized mass and energy conservation equations with the analytical solution of the film velocity. The model is verified by comparing its results with published experimental and numerical data. The results show that the model provides accurate predictions of ice accretion under different conditions, even when using an unstructured grid.</description><subject>Computer simulation</subject><subject>Conservation equations</subject><subject>Discretization</subject><subject>Energy conservation</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Ice accumulation</subject><subject>Lubrication</subject><subject>Mathematical models</subject><subject>Momentum</subject><subject>Solidification</subject><subject>Thickness</subject><subject>Three dimensional models</subject><subject>Unstructured grids (mathematics)</subject><subject>Water conservation</subject><subject>Water drops</subject><subject>Water film</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhoMoWGoP_oMFTwpbk8lumhxL8aNQ8KLnMM2H3bJtarIr-O9NrVRBcA4zSXh4581LyCWjY0YFv2XjmsEEeH1CBsBqWXIAcfrrfE5GKa1prkoxKqsBmU6LDXYrl1tjsC02wbq2WGJytgjbot-mLvam62O-b1xaFT7EojGuQGOi65qwvSBnHtvkRt9zSF7u755nj-Xi6WE-my5KU4HsSlwyBIscFLgaJkIyAZRZYShVFLx0TiljDfClr62vORUsNzNB6aVfKsWHZH7QtQHXehebDcYPHbDRXw8hvmqM-ROt01wIkGipQKYqqhBRCS9AGWZp9gFZ6-qgtYvhrXep0-vQx222r4FzKuuKVXvq-kCZGFKKzh-3Mqr3gWumvwPP7M2BTabpcJ_LEX4P8QfUO-v_g_8qfwKoUYv6</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Chen, Ningli</creator><creator>Hu, Yaping</creator><creator>Ji, Honghu</creator><creator>Cao, Guangzhou</creator><creator>Yuan, Yongqing</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1723-4690</orcidid><orcidid>https://orcid.org/0000-0003-4601-6764</orcidid></search><sort><creationdate>20191201</creationdate><title>A mathematical model based on unstructured mesh for ice accretion</title><author>Chen, Ningli ; Hu, Yaping ; Ji, Honghu ; Cao, Guangzhou ; Yuan, Yongqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-ab1a2da3292e5276816201d6c00902f8ee99cdc23bf5df53061530c7a8f8fb993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Conservation equations</topic><topic>Discretization</topic><topic>Energy conservation</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Ice accumulation</topic><topic>Lubrication</topic><topic>Mathematical models</topic><topic>Momentum</topic><topic>Solidification</topic><topic>Thickness</topic><topic>Three dimensional models</topic><topic>Unstructured grids (mathematics)</topic><topic>Water conservation</topic><topic>Water drops</topic><topic>Water film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ningli</creatorcontrib><creatorcontrib>Hu, Yaping</creatorcontrib><creatorcontrib>Ji, Honghu</creatorcontrib><creatorcontrib>Cao, Guangzhou</creatorcontrib><creatorcontrib>Yuan, Yongqing</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ningli</au><au>Hu, Yaping</au><au>Ji, Honghu</au><au>Cao, Guangzhou</au><au>Yuan, Yongqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model based on unstructured mesh for ice accretion</atitle><jtitle>AIP advances</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>9</volume><issue>12</issue><spage>125149</spage><epage>125149-9</epage><pages>125149-125149-9</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>This paper proposes a three-dimensional model to simulate ice accretion on the surface of an aircraft. The model is developed using a prism grid cell, which enables iterations with an unstructured mesh. The model assumes that the impinged water droplets on the surface can form a thin water film, and ice accretion is caused by the flow and solidification of the film. The model is developed by analyzing the conservations of mass, momentum, and energy for the thin water film on the surface. The mass and energy conservation equations of the water film are discretized on the prism grid cell, while the momentum conservation equation, which is simplified using lubrication theory, is integrated along the surface normal direction to obtain an analytical solution for the film velocity. The thicknesses of the water film and ice layer are calculated by iterating the discretized mass and energy conservation equations with the analytical solution of the film velocity. The model is verified by comparing its results with published experimental and numerical data. The results show that the model provides accurate predictions of ice accretion under different conditions, even when using an unstructured grid.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5127235</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1723-4690</orcidid><orcidid>https://orcid.org/0000-0003-4601-6764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2019-12, Vol.9 (12), p.125149-125149-9
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_2330854142
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Computer simulation
Conservation equations
Discretization
Energy conservation
Exact solutions
Finite element method
Ice accumulation
Lubrication
Mathematical models
Momentum
Solidification
Thickness
Three dimensional models
Unstructured grids (mathematics)
Water conservation
Water drops
Water film
title A mathematical model based on unstructured mesh for ice accretion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20based%20on%20unstructured%20mesh%20for%20ice%20accretion&rft.jtitle=AIP%20advances&rft.au=Chen,%20Ningli&rft.date=2019-12-01&rft.volume=9&rft.issue=12&rft.spage=125149&rft.epage=125149-9&rft.pages=125149-125149-9&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5127235&rft_dat=%3Cproquest_scita%3E2330854142%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330854142&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_36628ad06a19409aaa96f629c1d0ab12&rfr_iscdi=true