A Study of Automatically Detected Flow Channels in the Polar Cap Ionosphere

This paper presents a new algorithm for detecting high‐speed flow channels in the polar cap. The algorithm was applied to Super Dual Auroral Radar Network data, specifically to data from the new Longyearbyen radar. This radar is located at 78.2°N, 16.0°E geographical coordinates looking north‐east,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2019-11, Vol.124 (11), p.9430-9447
Hauptverfasser: Herlingshaw, K., Baddeley, L. J., Oksavik, K., Lorentzen, D. A., Bland, E. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9447
container_issue 11
container_start_page 9430
container_title Journal of geophysical research. Space physics
container_volume 124
creator Herlingshaw, K.
Baddeley, L. J.
Oksavik, K.
Lorentzen, D. A.
Bland, E. C.
description This paper presents a new algorithm for detecting high‐speed flow channels in the polar cap. The algorithm was applied to Super Dual Auroral Radar Network data, specifically to data from the new Longyearbyen radar. This radar is located at 78.2°N, 16.0°E geographical coordinates looking north‐east, and is therefore at an ideal location to measure flow channels in the high‐latitude polar cap. The algorithm detected >500 events over 1 year of observations, and within this paper two case studies are considered in more detail. A flow channel on “old‐open field lines” located on the dawn flank was directly driven under quiet conditions over 13 min. This flow channel contributed to a significant fraction (60%) of the cross polar cap potential and was located on the edge of a polar cap arc. Another case study follows the development of a flow channel on newly opened field lines within the cusp. This flow channel is a spontaneously driven event forming under strong solar wind driving and is intermittently excited over the course of almost an hour. As they provide a high fraction of the cross polar cap potential, these small‐scale structures are vital for understanding the transport of magnetic flux over the polar cap. Key Points Polar cap flow channels can account for a substantial amount (40–60%) of the cross polar cap potential Flow channels can form due to dayside reconnection or appear on the edge of polar cap arcs Magnetic field lines that opened 25 min ago can still cause fast flow channels deep inside the polar cap
doi_str_mv 10.1029/2019JA026916
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330711813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330711813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4119-a362d1715a663162d25951d043f373b76efd00c699df77bba9fc50f56d1b66213</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOObe_AABX63mJku6PJaqc3Og-Oc5pE3COrqmJi2j397KFHzyvNzD4cc9cBC6BHIDhMpbSkCuM0KFBHGCJhSETOSc0NNfzxbkHM1i3JFRizECPkFPGX7rejNg73DWd36vu6rUdT3gO9vZsrMGP9T-gPOtbhpbR1w1uNta_OJrHXCuW7zyjY_t1gZ7gc6crqOd_dwp-ni4f88fk83zcpVnm6ScA8hEM0ENpMC1EAxGT7nkYMicOZayIhXWGUJKIaVxaVoUWrqSE8eFgUIICmyKro5_2-A_exs7tfN9aMZKRRkjKcAC2EhdH6ky-BiDdaoN1V6HQQFR34upv4uNODvih6q2w7-sWi9fM84ZlewL9Hlp0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330711813</pqid></control><display><type>article</type><title>A Study of Automatically Detected Flow Channels in the Polar Cap Ionosphere</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Herlingshaw, K. ; Baddeley, L. J. ; Oksavik, K. ; Lorentzen, D. A. ; Bland, E. C.</creator><creatorcontrib>Herlingshaw, K. ; Baddeley, L. J. ; Oksavik, K. ; Lorentzen, D. A. ; Bland, E. C.</creatorcontrib><description>This paper presents a new algorithm for detecting high‐speed flow channels in the polar cap. The algorithm was applied to Super Dual Auroral Radar Network data, specifically to data from the new Longyearbyen radar. This radar is located at 78.2°N, 16.0°E geographical coordinates looking north‐east, and is therefore at an ideal location to measure flow channels in the high‐latitude polar cap. The algorithm detected &gt;500 events over 1 year of observations, and within this paper two case studies are considered in more detail. A flow channel on “old‐open field lines” located on the dawn flank was directly driven under quiet conditions over 13 min. This flow channel contributed to a significant fraction (60%) of the cross polar cap potential and was located on the edge of a polar cap arc. Another case study follows the development of a flow channel on newly opened field lines within the cusp. This flow channel is a spontaneously driven event forming under strong solar wind driving and is intermittently excited over the course of almost an hour. As they provide a high fraction of the cross polar cap potential, these small‐scale structures are vital for understanding the transport of magnetic flux over the polar cap. Key Points Polar cap flow channels can account for a substantial amount (40–60%) of the cross polar cap potential Flow channels can form due to dayside reconnection or appear on the edge of polar cap arcs Magnetic field lines that opened 25 min ago can still cause fast flow channels deep inside the polar cap</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2019JA026916</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Algorithms ; aurora ; Case studies ; Channels ; Driving ability ; flow channel ; Flow channels ; Geographical coordinates ; Ionosphere ; Magnetic flux ; Market strategy ; polar cap ; Polar caps ; Radar ; Radar data ; Radar networks ; Solar wind ; SuperDARN ; Zoos</subject><ispartof>Journal of geophysical research. Space physics, 2019-11, Vol.124 (11), p.9430-9447</ispartof><rights>2019. The Authors.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4119-a362d1715a663162d25951d043f373b76efd00c699df77bba9fc50f56d1b66213</citedby><cites>FETCH-LOGICAL-c4119-a362d1715a663162d25951d043f373b76efd00c699df77bba9fc50f56d1b66213</cites><orcidid>0000-0003-1246-0488 ; 0000-0003-4312-6992 ; 0000-0001-7628-4036 ; 0000-0001-6861-1914 ; 0000-0002-0252-0400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019JA026916$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019JA026916$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Herlingshaw, K.</creatorcontrib><creatorcontrib>Baddeley, L. J.</creatorcontrib><creatorcontrib>Oksavik, K.</creatorcontrib><creatorcontrib>Lorentzen, D. A.</creatorcontrib><creatorcontrib>Bland, E. C.</creatorcontrib><title>A Study of Automatically Detected Flow Channels in the Polar Cap Ionosphere</title><title>Journal of geophysical research. Space physics</title><description>This paper presents a new algorithm for detecting high‐speed flow channels in the polar cap. The algorithm was applied to Super Dual Auroral Radar Network data, specifically to data from the new Longyearbyen radar. This radar is located at 78.2°N, 16.0°E geographical coordinates looking north‐east, and is therefore at an ideal location to measure flow channels in the high‐latitude polar cap. The algorithm detected &gt;500 events over 1 year of observations, and within this paper two case studies are considered in more detail. A flow channel on “old‐open field lines” located on the dawn flank was directly driven under quiet conditions over 13 min. This flow channel contributed to a significant fraction (60%) of the cross polar cap potential and was located on the edge of a polar cap arc. Another case study follows the development of a flow channel on newly opened field lines within the cusp. This flow channel is a spontaneously driven event forming under strong solar wind driving and is intermittently excited over the course of almost an hour. As they provide a high fraction of the cross polar cap potential, these small‐scale structures are vital for understanding the transport of magnetic flux over the polar cap. Key Points Polar cap flow channels can account for a substantial amount (40–60%) of the cross polar cap potential Flow channels can form due to dayside reconnection or appear on the edge of polar cap arcs Magnetic field lines that opened 25 min ago can still cause fast flow channels deep inside the polar cap</description><subject>Algorithms</subject><subject>aurora</subject><subject>Case studies</subject><subject>Channels</subject><subject>Driving ability</subject><subject>flow channel</subject><subject>Flow channels</subject><subject>Geographical coordinates</subject><subject>Ionosphere</subject><subject>Magnetic flux</subject><subject>Market strategy</subject><subject>polar cap</subject><subject>Polar caps</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar networks</subject><subject>Solar wind</subject><subject>SuperDARN</subject><subject>Zoos</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kF9LwzAUxYMoOObe_AABX63mJku6PJaqc3Og-Oc5pE3COrqmJi2j397KFHzyvNzD4cc9cBC6BHIDhMpbSkCuM0KFBHGCJhSETOSc0NNfzxbkHM1i3JFRizECPkFPGX7rejNg73DWd36vu6rUdT3gO9vZsrMGP9T-gPOtbhpbR1w1uNta_OJrHXCuW7zyjY_t1gZ7gc6crqOd_dwp-ni4f88fk83zcpVnm6ScA8hEM0ENpMC1EAxGT7nkYMicOZayIhXWGUJKIaVxaVoUWrqSE8eFgUIICmyKro5_2-A_exs7tfN9aMZKRRkjKcAC2EhdH6ky-BiDdaoN1V6HQQFR34upv4uNODvih6q2w7-sWi9fM84ZlewL9Hlp0A</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Herlingshaw, K.</creator><creator>Baddeley, L. J.</creator><creator>Oksavik, K.</creator><creator>Lorentzen, D. A.</creator><creator>Bland, E. C.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1246-0488</orcidid><orcidid>https://orcid.org/0000-0003-4312-6992</orcidid><orcidid>https://orcid.org/0000-0001-7628-4036</orcidid><orcidid>https://orcid.org/0000-0001-6861-1914</orcidid><orcidid>https://orcid.org/0000-0002-0252-0400</orcidid></search><sort><creationdate>201911</creationdate><title>A Study of Automatically Detected Flow Channels in the Polar Cap Ionosphere</title><author>Herlingshaw, K. ; Baddeley, L. J. ; Oksavik, K. ; Lorentzen, D. A. ; Bland, E. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4119-a362d1715a663162d25951d043f373b76efd00c699df77bba9fc50f56d1b66213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>aurora</topic><topic>Case studies</topic><topic>Channels</topic><topic>Driving ability</topic><topic>flow channel</topic><topic>Flow channels</topic><topic>Geographical coordinates</topic><topic>Ionosphere</topic><topic>Magnetic flux</topic><topic>Market strategy</topic><topic>polar cap</topic><topic>Polar caps</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar networks</topic><topic>Solar wind</topic><topic>SuperDARN</topic><topic>Zoos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herlingshaw, K.</creatorcontrib><creatorcontrib>Baddeley, L. J.</creatorcontrib><creatorcontrib>Oksavik, K.</creatorcontrib><creatorcontrib>Lorentzen, D. A.</creatorcontrib><creatorcontrib>Bland, E. C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herlingshaw, K.</au><au>Baddeley, L. J.</au><au>Oksavik, K.</au><au>Lorentzen, D. A.</au><au>Bland, E. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Study of Automatically Detected Flow Channels in the Polar Cap Ionosphere</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2019-11</date><risdate>2019</risdate><volume>124</volume><issue>11</issue><spage>9430</spage><epage>9447</epage><pages>9430-9447</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>This paper presents a new algorithm for detecting high‐speed flow channels in the polar cap. The algorithm was applied to Super Dual Auroral Radar Network data, specifically to data from the new Longyearbyen radar. This radar is located at 78.2°N, 16.0°E geographical coordinates looking north‐east, and is therefore at an ideal location to measure flow channels in the high‐latitude polar cap. The algorithm detected &gt;500 events over 1 year of observations, and within this paper two case studies are considered in more detail. A flow channel on “old‐open field lines” located on the dawn flank was directly driven under quiet conditions over 13 min. This flow channel contributed to a significant fraction (60%) of the cross polar cap potential and was located on the edge of a polar cap arc. Another case study follows the development of a flow channel on newly opened field lines within the cusp. This flow channel is a spontaneously driven event forming under strong solar wind driving and is intermittently excited over the course of almost an hour. As they provide a high fraction of the cross polar cap potential, these small‐scale structures are vital for understanding the transport of magnetic flux over the polar cap. Key Points Polar cap flow channels can account for a substantial amount (40–60%) of the cross polar cap potential Flow channels can form due to dayside reconnection or appear on the edge of polar cap arcs Magnetic field lines that opened 25 min ago can still cause fast flow channels deep inside the polar cap</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2019JA026916</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1246-0488</orcidid><orcidid>https://orcid.org/0000-0003-4312-6992</orcidid><orcidid>https://orcid.org/0000-0001-7628-4036</orcidid><orcidid>https://orcid.org/0000-0001-6861-1914</orcidid><orcidid>https://orcid.org/0000-0002-0252-0400</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2019-11, Vol.124 (11), p.9430-9447
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_2330711813
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects Algorithms
aurora
Case studies
Channels
Driving ability
flow channel
Flow channels
Geographical coordinates
Ionosphere
Magnetic flux
Market strategy
polar cap
Polar caps
Radar
Radar data
Radar networks
Solar wind
SuperDARN
Zoos
title A Study of Automatically Detected Flow Channels in the Polar Cap Ionosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Study%20of%20Automatically%20Detected%20Flow%20Channels%20in%20the%20Polar%20Cap%20Ionosphere&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Herlingshaw,%20K.&rft.date=2019-11&rft.volume=124&rft.issue=11&rft.spage=9430&rft.epage=9447&rft.pages=9430-9447&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2019JA026916&rft_dat=%3Cproquest_cross%3E2330711813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330711813&rft_id=info:pmid/&rfr_iscdi=true