Seasonal Hydropower Planning for Data‐Scarce Regions Using Multimodel Ensemble Forecasts, Remote Sensing Data, and Stochastic Programming

In data‐scarce regions, seasonal hydropower planning is hindered by the unavailability of reliable long‐term streamflow observations, which are required for the construction of inflow scenario trees. In this study, we develop a methodological framework to overcome the problem of streamflow data scar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2019-11, Vol.55 (11), p.8583-8607
Hauptverfasser: Koppa, Akash, Gebremichael, Mekonnen, Zambon, Renato C., Yeh, William W.‐G., Hopson, Thomas M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8607
container_issue 11
container_start_page 8583
container_title Water resources research
container_volume 55
creator Koppa, Akash
Gebremichael, Mekonnen
Zambon, Renato C.
Yeh, William W.‐G.
Hopson, Thomas M.
description In data‐scarce regions, seasonal hydropower planning is hindered by the unavailability of reliable long‐term streamflow observations, which are required for the construction of inflow scenario trees. In this study, we develop a methodological framework to overcome the problem of streamflow data scarcity by combining precipitation forecasts from ensemble numerical weather prediction models, spatially distributed hydrologic models, and stochastic programming. We use evapotranspiration as a proxy for streamflow in generating reliable reservoir inflow forecasts. Using the framework, we compare three different formulations of inflow scenario structures and their applicability to data‐scarce regions: (1) a single deterministic forecast, (2) a scenario fan with the first stage deterministic, and (3) a scenario fan with all stages stochastic. We apply the framework to a cascade of two reservoirs in the Omo‐Gibe River basin in Ethiopia. Future reservoir inflows are generated using a 3‐model 30‐member ensemble seasonal precipitation forecast from the North American Multimodel Ensemble and the Noah‐MP hydrologic model. We then perform deterministic and stochastic optimization for hydropower operation and planning. Comparing the results from the three different inflow scenario structures, we observe that the uncertainty in reservoir inflows is significant only for the dry stages of the planning horizon. In addition, we find that the impact of model parameter uncertainty on hydropower production is significant (0.14–0.18×106 MWh). Key Points This presents a methodology that uses remote sensing and distributed models to generate reservoir inflow forecasts in data‐scarce regions This combines ensemble inflow forecasts with stochastic programming with recourse for hydropower optimization This studies the impact of uncertainty in precipitation forecasts and model parameters on hydropower production
doi_str_mv 10.1029/2019WR025228
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330653938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330653938</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3309-b97461689d6141ea0220ac1eae1cbce825cb992100efc80da06770b285749c653</originalsourceid><addsrcrecordid>eNp90LtKA0EUBuBBFIyXzgcYsM3qmcteppSYGEFREsVymZ09iRt2d-LMhpDO3sZn9EmcGAsrq3PgfPwHfkLOGFww4OqSA1MvE-Ax59ke6TElZZSqVOyTHoAUERMqPSRH3i8AmIyTtEc-pqi9bXVNx5vS2aVdo6OPtW7bqp3TmXX0Wnf66_1zarQzSCc4r2zr6bPf3u9XdVc1tsSaDluPTVEjHVmHRvvO9wNubId0iu2P3ib1qW5LOu2seQ2mMvTR2bnTTRPACTmY6drj6e88Js-j4dNgHN093NwOru4iLQSoqFCpTFiSqTJhkqEGzkGbsCAzhcGMx6ZQijMAnJkMSg1JmkLBsziVyiSxOCbnu9yls28r9F2-sCsXOvA5Dx-CUCILqr9TxlnvHc7ypasa7TY5g3xbd_637sDFjq-rGjf_2vxlMphwyaUS393ygyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330653938</pqid></control><display><type>article</type><title>Seasonal Hydropower Planning for Data‐Scarce Regions Using Multimodel Ensemble Forecasts, Remote Sensing Data, and Stochastic Programming</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Koppa, Akash ; Gebremichael, Mekonnen ; Zambon, Renato C. ; Yeh, William W.‐G. ; Hopson, Thomas M.</creator><creatorcontrib>Koppa, Akash ; Gebremichael, Mekonnen ; Zambon, Renato C. ; Yeh, William W.‐G. ; Hopson, Thomas M.</creatorcontrib><description>In data‐scarce regions, seasonal hydropower planning is hindered by the unavailability of reliable long‐term streamflow observations, which are required for the construction of inflow scenario trees. In this study, we develop a methodological framework to overcome the problem of streamflow data scarcity by combining precipitation forecasts from ensemble numerical weather prediction models, spatially distributed hydrologic models, and stochastic programming. We use evapotranspiration as a proxy for streamflow in generating reliable reservoir inflow forecasts. Using the framework, we compare three different formulations of inflow scenario structures and their applicability to data‐scarce regions: (1) a single deterministic forecast, (2) a scenario fan with the first stage deterministic, and (3) a scenario fan with all stages stochastic. We apply the framework to a cascade of two reservoirs in the Omo‐Gibe River basin in Ethiopia. Future reservoir inflows are generated using a 3‐model 30‐member ensemble seasonal precipitation forecast from the North American Multimodel Ensemble and the Noah‐MP hydrologic model. We then perform deterministic and stochastic optimization for hydropower operation and planning. Comparing the results from the three different inflow scenario structures, we observe that the uncertainty in reservoir inflows is significant only for the dry stages of the planning horizon. In addition, we find that the impact of model parameter uncertainty on hydropower production is significant (0.14–0.18×106 MWh). Key Points This presents a methodology that uses remote sensing and distributed models to generate reservoir inflow forecasts in data‐scarce regions This combines ensemble inflow forecasts with stochastic programming with recourse for hydropower optimization This studies the impact of uncertainty in precipitation forecasts and model parameters on hydropower production</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2019WR025228</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Data ; data‐scarce regions ; Ensemble forecasting ; Evapotranspiration ; Frameworks ; Hydroelectric power ; Hydrologic data ; Hydrologic models ; Hydrology ; hydropower planning ; Inflow ; Optimization ; Parameter uncertainty ; Precipitation ; Precipitation forecasting ; Prediction models ; Regions ; Remote sensing ; Reservoirs ; River basins ; Rivers ; Seasonal precipitation ; Stochastic programming ; Stream discharge ; Stream flow ; Streamflow data ; taxonomy ; taxonomy numbers ; Uncertainty ; Water inflow ; Weather forecasting</subject><ispartof>Water resources research, 2019-11, Vol.55 (11), p.8583-8607</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3309-b97461689d6141ea0220ac1eae1cbce825cb992100efc80da06770b285749c653</citedby><cites>FETCH-LOGICAL-a3309-b97461689d6141ea0220ac1eae1cbce825cb992100efc80da06770b285749c653</cites><orcidid>0000-0002-4595-7274 ; 0000-0003-4552-6236 ; 0000-0001-5671-0878 ; 0000-0003-0923-1705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019WR025228$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019WR025228$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Koppa, Akash</creatorcontrib><creatorcontrib>Gebremichael, Mekonnen</creatorcontrib><creatorcontrib>Zambon, Renato C.</creatorcontrib><creatorcontrib>Yeh, William W.‐G.</creatorcontrib><creatorcontrib>Hopson, Thomas M.</creatorcontrib><title>Seasonal Hydropower Planning for Data‐Scarce Regions Using Multimodel Ensemble Forecasts, Remote Sensing Data, and Stochastic Programming</title><title>Water resources research</title><description>In data‐scarce regions, seasonal hydropower planning is hindered by the unavailability of reliable long‐term streamflow observations, which are required for the construction of inflow scenario trees. In this study, we develop a methodological framework to overcome the problem of streamflow data scarcity by combining precipitation forecasts from ensemble numerical weather prediction models, spatially distributed hydrologic models, and stochastic programming. We use evapotranspiration as a proxy for streamflow in generating reliable reservoir inflow forecasts. Using the framework, we compare three different formulations of inflow scenario structures and their applicability to data‐scarce regions: (1) a single deterministic forecast, (2) a scenario fan with the first stage deterministic, and (3) a scenario fan with all stages stochastic. We apply the framework to a cascade of two reservoirs in the Omo‐Gibe River basin in Ethiopia. Future reservoir inflows are generated using a 3‐model 30‐member ensemble seasonal precipitation forecast from the North American Multimodel Ensemble and the Noah‐MP hydrologic model. We then perform deterministic and stochastic optimization for hydropower operation and planning. Comparing the results from the three different inflow scenario structures, we observe that the uncertainty in reservoir inflows is significant only for the dry stages of the planning horizon. In addition, we find that the impact of model parameter uncertainty on hydropower production is significant (0.14–0.18×106 MWh). Key Points This presents a methodology that uses remote sensing and distributed models to generate reservoir inflow forecasts in data‐scarce regions This combines ensemble inflow forecasts with stochastic programming with recourse for hydropower optimization This studies the impact of uncertainty in precipitation forecasts and model parameters on hydropower production</description><subject>Data</subject><subject>data‐scarce regions</subject><subject>Ensemble forecasting</subject><subject>Evapotranspiration</subject><subject>Frameworks</subject><subject>Hydroelectric power</subject><subject>Hydrologic data</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>hydropower planning</subject><subject>Inflow</subject><subject>Optimization</subject><subject>Parameter uncertainty</subject><subject>Precipitation</subject><subject>Precipitation forecasting</subject><subject>Prediction models</subject><subject>Regions</subject><subject>Remote sensing</subject><subject>Reservoirs</subject><subject>River basins</subject><subject>Rivers</subject><subject>Seasonal precipitation</subject><subject>Stochastic programming</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Streamflow data</subject><subject>taxonomy</subject><subject>taxonomy numbers</subject><subject>Uncertainty</subject><subject>Water inflow</subject><subject>Weather forecasting</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90LtKA0EUBuBBFIyXzgcYsM3qmcteppSYGEFREsVymZ09iRt2d-LMhpDO3sZn9EmcGAsrq3PgfPwHfkLOGFww4OqSA1MvE-Ax59ke6TElZZSqVOyTHoAUERMqPSRH3i8AmIyTtEc-pqi9bXVNx5vS2aVdo6OPtW7bqp3TmXX0Wnf66_1zarQzSCc4r2zr6bPf3u9XdVc1tsSaDluPTVEjHVmHRvvO9wNubId0iu2P3ib1qW5LOu2seQ2mMvTR2bnTTRPACTmY6drj6e88Js-j4dNgHN093NwOru4iLQSoqFCpTFiSqTJhkqEGzkGbsCAzhcGMx6ZQijMAnJkMSg1JmkLBsziVyiSxOCbnu9yls28r9F2-sCsXOvA5Dx-CUCILqr9TxlnvHc7ypasa7TY5g3xbd_637sDFjq-rGjf_2vxlMphwyaUS393ygyU</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Koppa, Akash</creator><creator>Gebremichael, Mekonnen</creator><creator>Zambon, Renato C.</creator><creator>Yeh, William W.‐G.</creator><creator>Hopson, Thomas M.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4595-7274</orcidid><orcidid>https://orcid.org/0000-0003-4552-6236</orcidid><orcidid>https://orcid.org/0000-0001-5671-0878</orcidid><orcidid>https://orcid.org/0000-0003-0923-1705</orcidid></search><sort><creationdate>201911</creationdate><title>Seasonal Hydropower Planning for Data‐Scarce Regions Using Multimodel Ensemble Forecasts, Remote Sensing Data, and Stochastic Programming</title><author>Koppa, Akash ; Gebremichael, Mekonnen ; Zambon, Renato C. ; Yeh, William W.‐G. ; Hopson, Thomas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3309-b97461689d6141ea0220ac1eae1cbce825cb992100efc80da06770b285749c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data</topic><topic>data‐scarce regions</topic><topic>Ensemble forecasting</topic><topic>Evapotranspiration</topic><topic>Frameworks</topic><topic>Hydroelectric power</topic><topic>Hydrologic data</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>hydropower planning</topic><topic>Inflow</topic><topic>Optimization</topic><topic>Parameter uncertainty</topic><topic>Precipitation</topic><topic>Precipitation forecasting</topic><topic>Prediction models</topic><topic>Regions</topic><topic>Remote sensing</topic><topic>Reservoirs</topic><topic>River basins</topic><topic>Rivers</topic><topic>Seasonal precipitation</topic><topic>Stochastic programming</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Streamflow data</topic><topic>taxonomy</topic><topic>taxonomy numbers</topic><topic>Uncertainty</topic><topic>Water inflow</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koppa, Akash</creatorcontrib><creatorcontrib>Gebremichael, Mekonnen</creatorcontrib><creatorcontrib>Zambon, Renato C.</creatorcontrib><creatorcontrib>Yeh, William W.‐G.</creatorcontrib><creatorcontrib>Hopson, Thomas M.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koppa, Akash</au><au>Gebremichael, Mekonnen</au><au>Zambon, Renato C.</au><au>Yeh, William W.‐G.</au><au>Hopson, Thomas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal Hydropower Planning for Data‐Scarce Regions Using Multimodel Ensemble Forecasts, Remote Sensing Data, and Stochastic Programming</atitle><jtitle>Water resources research</jtitle><date>2019-11</date><risdate>2019</risdate><volume>55</volume><issue>11</issue><spage>8583</spage><epage>8607</epage><pages>8583-8607</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>In data‐scarce regions, seasonal hydropower planning is hindered by the unavailability of reliable long‐term streamflow observations, which are required for the construction of inflow scenario trees. In this study, we develop a methodological framework to overcome the problem of streamflow data scarcity by combining precipitation forecasts from ensemble numerical weather prediction models, spatially distributed hydrologic models, and stochastic programming. We use evapotranspiration as a proxy for streamflow in generating reliable reservoir inflow forecasts. Using the framework, we compare three different formulations of inflow scenario structures and their applicability to data‐scarce regions: (1) a single deterministic forecast, (2) a scenario fan with the first stage deterministic, and (3) a scenario fan with all stages stochastic. We apply the framework to a cascade of two reservoirs in the Omo‐Gibe River basin in Ethiopia. Future reservoir inflows are generated using a 3‐model 30‐member ensemble seasonal precipitation forecast from the North American Multimodel Ensemble and the Noah‐MP hydrologic model. We then perform deterministic and stochastic optimization for hydropower operation and planning. Comparing the results from the three different inflow scenario structures, we observe that the uncertainty in reservoir inflows is significant only for the dry stages of the planning horizon. In addition, we find that the impact of model parameter uncertainty on hydropower production is significant (0.14–0.18×106 MWh). Key Points This presents a methodology that uses remote sensing and distributed models to generate reservoir inflow forecasts in data‐scarce regions This combines ensemble inflow forecasts with stochastic programming with recourse for hydropower optimization This studies the impact of uncertainty in precipitation forecasts and model parameters on hydropower production</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2019WR025228</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-4595-7274</orcidid><orcidid>https://orcid.org/0000-0003-4552-6236</orcidid><orcidid>https://orcid.org/0000-0001-5671-0878</orcidid><orcidid>https://orcid.org/0000-0003-0923-1705</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2019-11, Vol.55 (11), p.8583-8607
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_2330653938
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Data
data‐scarce regions
Ensemble forecasting
Evapotranspiration
Frameworks
Hydroelectric power
Hydrologic data
Hydrologic models
Hydrology
hydropower planning
Inflow
Optimization
Parameter uncertainty
Precipitation
Precipitation forecasting
Prediction models
Regions
Remote sensing
Reservoirs
River basins
Rivers
Seasonal precipitation
Stochastic programming
Stream discharge
Stream flow
Streamflow data
taxonomy
taxonomy numbers
Uncertainty
Water inflow
Weather forecasting
title Seasonal Hydropower Planning for Data‐Scarce Regions Using Multimodel Ensemble Forecasts, Remote Sensing Data, and Stochastic Programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20Hydropower%20Planning%20for%20Data%E2%80%90Scarce%20Regions%20Using%20Multimodel%20Ensemble%20Forecasts,%20Remote%20Sensing%20Data,%20and%20Stochastic%20Programming&rft.jtitle=Water%20resources%20research&rft.au=Koppa,%20Akash&rft.date=2019-11&rft.volume=55&rft.issue=11&rft.spage=8583&rft.epage=8607&rft.pages=8583-8607&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2019WR025228&rft_dat=%3Cproquest_cross%3E2330653938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330653938&rft_id=info:pmid/&rfr_iscdi=true