Thermodynamic modelling of the Ni–Zr system
In this work, we report the thermodynamic modelling of the Ni–Zr system using the Calphad method combined with ab initio calculations. Density functional theory (DFT) is employed to calculate the enthalpy of formation of the intermediate phases. The calculated enthalpies of formation are in close ag...
Gespeichert in:
Veröffentlicht in: | Intermetallics 2020-01, Vol.116, p.106640, Article 106640 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106640 |
container_title | Intermetallics |
container_volume | 116 |
creator | Jana, Asmita Sridar, Soumya Fries, Suzana G. Hammerschmidt, Thomas Kumar, K.C. Hari |
description | In this work, we report the thermodynamic modelling of the Ni–Zr system using the Calphad method combined with ab initio calculations. Density functional theory (DFT) is employed to calculate the enthalpy of formation of the intermediate phases. The calculated enthalpies of formation are in close agreement with the experimental data. An approach based on special quasirandom structures (SQS) was used for calculating the enthalpy of mixing of the fcc solid solution. The vibrational contribution to the heat capacities of NiZr, NiZr2, Ni3Zr and Ni7Zr2 phases were calculated using the quasiharmonic approximation (QHA) and the corresponding electronic contribution was obtained using an approach based on Mermin statistics. The total heat capacities for these phases were fitted to appropriate expressions and integrated to obtain the Gibbs energy functions valid down to 0 K. The calculated thermochemical properties along with critically selected experimental constitutional and thermochemical data served as input for the thermodynamic optimisation of the system. The calculated phase equilibria and the thermodynamic properties using the optimised Gibbs energy functions are in good agreement with the input data. The calculated congruent melting points of NiZr and NiZr2 phases are close to the recent experimental data. The Ni10Z7 phase forms by a peritectic reaction, which is also in agreement with the experimental data.
•Calphad method is used to model the Ni–Zr system.•Non-stoichiometry of Ni5Zr is modelled using a two-sublattice model.•Latest experimental data from literature is used as input.•Complementary use of DFT, SQS and phonon calculations in the modeling.•Phonon calculations include electronic contribution to heat capacity. |
doi_str_mv | 10.1016/j.intermet.2019.106640 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330585799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0966979519307630</els_id><sourcerecordid>2330585799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-16efcf5f335514d45fc31907436a08a65c0d55041dbac448addb0330bff2a4a3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKuvIAOup95MfmayU4p_UHTTlZuQ5sdm6MzUJBW68x18Q5_ElNG1q3u5nHMu50PoEsMMA-bX7cz3yYbOplkFWOQj5xSO0AQ3tSihwvwYTUBwXopasFN0FmMLgGsgbILK5TpbB7PvVed1kTe72fj-rRhckda2ePbfn1-voYj7mGx3jk6c2kR78TunaHl_t5w_louXh6f57aLUhEIqMbdOO-YIYQxTQ5nTBAuoKeEKGsWZBsMYUGxWSlPaKGNWQAisnKsUVWSKrsbYbRjedzYm2Q670OePssoy1rBaiKzio0qHIcZgndwG36mwlxjkgYxs5R8ZeSAjRzLZeDMaba7w4W2QUXvba2t8sDpJM_j_In4Abb5v2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330585799</pqid></control><display><type>article</type><title>Thermodynamic modelling of the Ni–Zr system</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jana, Asmita ; Sridar, Soumya ; Fries, Suzana G. ; Hammerschmidt, Thomas ; Kumar, K.C. Hari</creator><creatorcontrib>Jana, Asmita ; Sridar, Soumya ; Fries, Suzana G. ; Hammerschmidt, Thomas ; Kumar, K.C. Hari</creatorcontrib><description>In this work, we report the thermodynamic modelling of the Ni–Zr system using the Calphad method combined with ab initio calculations. Density functional theory (DFT) is employed to calculate the enthalpy of formation of the intermediate phases. The calculated enthalpies of formation are in close agreement with the experimental data. An approach based on special quasirandom structures (SQS) was used for calculating the enthalpy of mixing of the fcc solid solution. The vibrational contribution to the heat capacities of NiZr, NiZr2, Ni3Zr and Ni7Zr2 phases were calculated using the quasiharmonic approximation (QHA) and the corresponding electronic contribution was obtained using an approach based on Mermin statistics. The total heat capacities for these phases were fitted to appropriate expressions and integrated to obtain the Gibbs energy functions valid down to 0 K. The calculated thermochemical properties along with critically selected experimental constitutional and thermochemical data served as input for the thermodynamic optimisation of the system. The calculated phase equilibria and the thermodynamic properties using the optimised Gibbs energy functions are in good agreement with the input data. The calculated congruent melting points of NiZr and NiZr2 phases are close to the recent experimental data. The Ni10Z7 phase forms by a peritectic reaction, which is also in agreement with the experimental data.
•Calphad method is used to model the Ni–Zr system.•Non-stoichiometry of Ni5Zr is modelled using a two-sublattice model.•Latest experimental data from literature is used as input.•Complementary use of DFT, SQS and phonon calculations in the modeling.•Phonon calculations include electronic contribution to heat capacity.</description><identifier>ISSN: 0966-9795</identifier><identifier>EISSN: 1879-0216</identifier><identifier>DOI: 10.1016/j.intermet.2019.106640</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Ab initio calculations ; Calphad ; Computer simulation ; Density functional theory ; Enthalpy ; Mathematical analysis ; Melting points ; Modelling ; Ni–Zr phase diagram ; Optimisation ; Optimization ; Phase equilibria ; Phases ; QHA ; Solid solutions ; SQS ; Thermochemical properties ; Thermodynamic equilibrium ; Thermodynamic models ; Thermodynamic properties ; Zirconium</subject><ispartof>Intermetallics, 2020-01, Vol.116, p.106640, Article 106640</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-16efcf5f335514d45fc31907436a08a65c0d55041dbac448addb0330bff2a4a3</citedby><cites>FETCH-LOGICAL-c340t-16efcf5f335514d45fc31907436a08a65c0d55041dbac448addb0330bff2a4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.intermet.2019.106640$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jana, Asmita</creatorcontrib><creatorcontrib>Sridar, Soumya</creatorcontrib><creatorcontrib>Fries, Suzana G.</creatorcontrib><creatorcontrib>Hammerschmidt, Thomas</creatorcontrib><creatorcontrib>Kumar, K.C. Hari</creatorcontrib><title>Thermodynamic modelling of the Ni–Zr system</title><title>Intermetallics</title><description>In this work, we report the thermodynamic modelling of the Ni–Zr system using the Calphad method combined with ab initio calculations. Density functional theory (DFT) is employed to calculate the enthalpy of formation of the intermediate phases. The calculated enthalpies of formation are in close agreement with the experimental data. An approach based on special quasirandom structures (SQS) was used for calculating the enthalpy of mixing of the fcc solid solution. The vibrational contribution to the heat capacities of NiZr, NiZr2, Ni3Zr and Ni7Zr2 phases were calculated using the quasiharmonic approximation (QHA) and the corresponding electronic contribution was obtained using an approach based on Mermin statistics. The total heat capacities for these phases were fitted to appropriate expressions and integrated to obtain the Gibbs energy functions valid down to 0 K. The calculated thermochemical properties along with critically selected experimental constitutional and thermochemical data served as input for the thermodynamic optimisation of the system. The calculated phase equilibria and the thermodynamic properties using the optimised Gibbs energy functions are in good agreement with the input data. The calculated congruent melting points of NiZr and NiZr2 phases are close to the recent experimental data. The Ni10Z7 phase forms by a peritectic reaction, which is also in agreement with the experimental data.
•Calphad method is used to model the Ni–Zr system.•Non-stoichiometry of Ni5Zr is modelled using a two-sublattice model.•Latest experimental data from literature is used as input.•Complementary use of DFT, SQS and phonon calculations in the modeling.•Phonon calculations include electronic contribution to heat capacity.</description><subject>Ab initio calculations</subject><subject>Calphad</subject><subject>Computer simulation</subject><subject>Density functional theory</subject><subject>Enthalpy</subject><subject>Mathematical analysis</subject><subject>Melting points</subject><subject>Modelling</subject><subject>Ni–Zr phase diagram</subject><subject>Optimisation</subject><subject>Optimization</subject><subject>Phase equilibria</subject><subject>Phases</subject><subject>QHA</subject><subject>Solid solutions</subject><subject>SQS</subject><subject>Thermochemical properties</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamic models</subject><subject>Thermodynamic properties</subject><subject>Zirconium</subject><issn>0966-9795</issn><issn>1879-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKuvIAOup95MfmayU4p_UHTTlZuQ5sdm6MzUJBW68x18Q5_ElNG1q3u5nHMu50PoEsMMA-bX7cz3yYbOplkFWOQj5xSO0AQ3tSihwvwYTUBwXopasFN0FmMLgGsgbILK5TpbB7PvVed1kTe72fj-rRhckda2ePbfn1-voYj7mGx3jk6c2kR78TunaHl_t5w_louXh6f57aLUhEIqMbdOO-YIYQxTQ5nTBAuoKeEKGsWZBsMYUGxWSlPaKGNWQAisnKsUVWSKrsbYbRjedzYm2Q670OePssoy1rBaiKzio0qHIcZgndwG36mwlxjkgYxs5R8ZeSAjRzLZeDMaba7w4W2QUXvba2t8sDpJM_j_In4Abb5v2A</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Jana, Asmita</creator><creator>Sridar, Soumya</creator><creator>Fries, Suzana G.</creator><creator>Hammerschmidt, Thomas</creator><creator>Kumar, K.C. Hari</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202001</creationdate><title>Thermodynamic modelling of the Ni–Zr system</title><author>Jana, Asmita ; Sridar, Soumya ; Fries, Suzana G. ; Hammerschmidt, Thomas ; Kumar, K.C. Hari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-16efcf5f335514d45fc31907436a08a65c0d55041dbac448addb0330bff2a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ab initio calculations</topic><topic>Calphad</topic><topic>Computer simulation</topic><topic>Density functional theory</topic><topic>Enthalpy</topic><topic>Mathematical analysis</topic><topic>Melting points</topic><topic>Modelling</topic><topic>Ni–Zr phase diagram</topic><topic>Optimisation</topic><topic>Optimization</topic><topic>Phase equilibria</topic><topic>Phases</topic><topic>QHA</topic><topic>Solid solutions</topic><topic>SQS</topic><topic>Thermochemical properties</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamic models</topic><topic>Thermodynamic properties</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jana, Asmita</creatorcontrib><creatorcontrib>Sridar, Soumya</creatorcontrib><creatorcontrib>Fries, Suzana G.</creatorcontrib><creatorcontrib>Hammerschmidt, Thomas</creatorcontrib><creatorcontrib>Kumar, K.C. Hari</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Intermetallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jana, Asmita</au><au>Sridar, Soumya</au><au>Fries, Suzana G.</au><au>Hammerschmidt, Thomas</au><au>Kumar, K.C. Hari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic modelling of the Ni–Zr system</atitle><jtitle>Intermetallics</jtitle><date>2020-01</date><risdate>2020</risdate><volume>116</volume><spage>106640</spage><pages>106640-</pages><artnum>106640</artnum><issn>0966-9795</issn><eissn>1879-0216</eissn><abstract>In this work, we report the thermodynamic modelling of the Ni–Zr system using the Calphad method combined with ab initio calculations. Density functional theory (DFT) is employed to calculate the enthalpy of formation of the intermediate phases. The calculated enthalpies of formation are in close agreement with the experimental data. An approach based on special quasirandom structures (SQS) was used for calculating the enthalpy of mixing of the fcc solid solution. The vibrational contribution to the heat capacities of NiZr, NiZr2, Ni3Zr and Ni7Zr2 phases were calculated using the quasiharmonic approximation (QHA) and the corresponding electronic contribution was obtained using an approach based on Mermin statistics. The total heat capacities for these phases were fitted to appropriate expressions and integrated to obtain the Gibbs energy functions valid down to 0 K. The calculated thermochemical properties along with critically selected experimental constitutional and thermochemical data served as input for the thermodynamic optimisation of the system. The calculated phase equilibria and the thermodynamic properties using the optimised Gibbs energy functions are in good agreement with the input data. The calculated congruent melting points of NiZr and NiZr2 phases are close to the recent experimental data. The Ni10Z7 phase forms by a peritectic reaction, which is also in agreement with the experimental data.
•Calphad method is used to model the Ni–Zr system.•Non-stoichiometry of Ni5Zr is modelled using a two-sublattice model.•Latest experimental data from literature is used as input.•Complementary use of DFT, SQS and phonon calculations in the modeling.•Phonon calculations include electronic contribution to heat capacity.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.intermet.2019.106640</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-9795 |
ispartof | Intermetallics, 2020-01, Vol.116, p.106640, Article 106640 |
issn | 0966-9795 1879-0216 |
language | eng |
recordid | cdi_proquest_journals_2330585799 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Ab initio calculations Calphad Computer simulation Density functional theory Enthalpy Mathematical analysis Melting points Modelling Ni–Zr phase diagram Optimisation Optimization Phase equilibria Phases QHA Solid solutions SQS Thermochemical properties Thermodynamic equilibrium Thermodynamic models Thermodynamic properties Zirconium |
title | Thermodynamic modelling of the Ni–Zr system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20modelling%20of%20the%20Ni%E2%80%93Zr%20system&rft.jtitle=Intermetallics&rft.au=Jana,%20Asmita&rft.date=2020-01&rft.volume=116&rft.spage=106640&rft.pages=106640-&rft.artnum=106640&rft.issn=0966-9795&rft.eissn=1879-0216&rft_id=info:doi/10.1016/j.intermet.2019.106640&rft_dat=%3Cproquest_cross%3E2330585799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330585799&rft_id=info:pmid/&rft_els_id=S0966979519307630&rfr_iscdi=true |