Low-rank graph preserving discriminative dictionary learning for image recognition

Discriminative dictionary learning plays a key role in sparse representation-based classification. In this paper, we propose a low-rank graph preserving discriminative dictionary learning (LRGPDDL) method for sparse representation-based image recognition. Specifically, we learn a common sub-dictiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2020-01, Vol.187, p.104823, Article 104823
Hauptverfasser: Du, Haishun, Ma, Luogang, Li, Guodong, Wang, Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104823
container_title Knowledge-based systems
container_volume 187
creator Du, Haishun
Ma, Luogang
Li, Guodong
Wang, Sheng
description Discriminative dictionary learning plays a key role in sparse representation-based classification. In this paper, we propose a low-rank graph preserving discriminative dictionary learning (LRGPDDL) method for sparse representation-based image recognition. Specifically, we learn a common sub-dictionary as well as several class-specific sub-dictionaries to explicitly capture the common information shared by all the classes and the class-specific information belonging to the corresponding class. We also impose a low-rank constraint on each sub-dictionary to weaken the negative influence from noise contained in training samples. A discriminative graph preserving criterion and a discriminative reconstruction error term are used for exploiting discriminative information, which can improve the discriminative ability of the learned dictionary effectively. In addition, an incoherence term is also introduced into the proposed dictionary learning model to encourage the learned sub-dictionaries to be as independent as possible. Experimental results on several image datasets verify the effectiveness and robustness of LRGPDDL. •A low-rank graph preserving discriminative dictionary learning method is proposed.•A low-rank constraint and an incoherence term are introduced in the DL model.•A discriminative graph preserving criterion is incorporated into the DL model.
doi_str_mv 10.1016/j.knosys.2019.06.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330585232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705119302989</els_id><sourcerecordid>2330585232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-982dae2b775da0a5009335ae34117e2945892c6943c4d0a0d2e0d9c927a1d94d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMOC510nyX7lIkjxCwqC6DnEZLpm2yZrsq3035ulnj0NA887w_MSck2hoEDr275YOx8PsWBARQF1AZyekBltG5Y3JYhTMgNRQd5ARc_JRYw9ADBG2xl5W_qfPCi3zrqghq9sCBgx7K3rMmOjDnZrnRrtHtOqR-udCodsgyq4CVn5kNmt6jALqH3n7ERckrOV2kS8-ptz8vH48L54zpevTy-L-2WuS4AxFy0zCtln01RGgaoABOeVQl5S2iATZdUKpmtRcl0aUGAYghFasEZRI0rD5-TmeHcI_nuHcZS93wWXXkrGOVRtxThLVHmkdPAxBlzJIUklC0lBTu3JXh7bk1N7EmqZ2kuxu2MMk8HeYpBRW3QajU2qozTe_n_gFxuaeyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330585232</pqid></control><display><type>article</type><title>Low-rank graph preserving discriminative dictionary learning for image recognition</title><source>Elsevier ScienceDirect Journals</source><creator>Du, Haishun ; Ma, Luogang ; Li, Guodong ; Wang, Sheng</creator><creatorcontrib>Du, Haishun ; Ma, Luogang ; Li, Guodong ; Wang, Sheng</creatorcontrib><description>Discriminative dictionary learning plays a key role in sparse representation-based classification. In this paper, we propose a low-rank graph preserving discriminative dictionary learning (LRGPDDL) method for sparse representation-based image recognition. Specifically, we learn a common sub-dictionary as well as several class-specific sub-dictionaries to explicitly capture the common information shared by all the classes and the class-specific information belonging to the corresponding class. We also impose a low-rank constraint on each sub-dictionary to weaken the negative influence from noise contained in training samples. A discriminative graph preserving criterion and a discriminative reconstruction error term are used for exploiting discriminative information, which can improve the discriminative ability of the learned dictionary effectively. In addition, an incoherence term is also introduced into the proposed dictionary learning model to encourage the learned sub-dictionaries to be as independent as possible. Experimental results on several image datasets verify the effectiveness and robustness of LRGPDDL. •A low-rank graph preserving discriminative dictionary learning method is proposed.•A low-rank constraint and an incoherence term are introduced in the DL model.•A discriminative graph preserving criterion is incorporated into the DL model.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2019.06.031</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Dictionaries ; Dictionary learning ; Graph preserving ; Graphical representations ; Image recognition ; Incoherence ; Learning ; Low-rank ; Object recognition ; Sparse representation</subject><ispartof>Knowledge-based systems, 2020-01, Vol.187, p.104823, Article 104823</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-982dae2b775da0a5009335ae34117e2945892c6943c4d0a0d2e0d9c927a1d94d3</citedby><cites>FETCH-LOGICAL-c400t-982dae2b775da0a5009335ae34117e2945892c6943c4d0a0d2e0d9c927a1d94d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705119302989$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Du, Haishun</creatorcontrib><creatorcontrib>Ma, Luogang</creatorcontrib><creatorcontrib>Li, Guodong</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><title>Low-rank graph preserving discriminative dictionary learning for image recognition</title><title>Knowledge-based systems</title><description>Discriminative dictionary learning plays a key role in sparse representation-based classification. In this paper, we propose a low-rank graph preserving discriminative dictionary learning (LRGPDDL) method for sparse representation-based image recognition. Specifically, we learn a common sub-dictionary as well as several class-specific sub-dictionaries to explicitly capture the common information shared by all the classes and the class-specific information belonging to the corresponding class. We also impose a low-rank constraint on each sub-dictionary to weaken the negative influence from noise contained in training samples. A discriminative graph preserving criterion and a discriminative reconstruction error term are used for exploiting discriminative information, which can improve the discriminative ability of the learned dictionary effectively. In addition, an incoherence term is also introduced into the proposed dictionary learning model to encourage the learned sub-dictionaries to be as independent as possible. Experimental results on several image datasets verify the effectiveness and robustness of LRGPDDL. •A low-rank graph preserving discriminative dictionary learning method is proposed.•A low-rank constraint and an incoherence term are introduced in the DL model.•A discriminative graph preserving criterion is incorporated into the DL model.</description><subject>Dictionaries</subject><subject>Dictionary learning</subject><subject>Graph preserving</subject><subject>Graphical representations</subject><subject>Image recognition</subject><subject>Incoherence</subject><subject>Learning</subject><subject>Low-rank</subject><subject>Object recognition</subject><subject>Sparse representation</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMOC510nyX7lIkjxCwqC6DnEZLpm2yZrsq3035ulnj0NA887w_MSck2hoEDr275YOx8PsWBARQF1AZyekBltG5Y3JYhTMgNRQd5ARc_JRYw9ADBG2xl5W_qfPCi3zrqghq9sCBgx7K3rMmOjDnZrnRrtHtOqR-udCodsgyq4CVn5kNmt6jALqH3n7ERckrOV2kS8-ptz8vH48L54zpevTy-L-2WuS4AxFy0zCtln01RGgaoABOeVQl5S2iATZdUKpmtRcl0aUGAYghFasEZRI0rD5-TmeHcI_nuHcZS93wWXXkrGOVRtxThLVHmkdPAxBlzJIUklC0lBTu3JXh7bk1N7EmqZ2kuxu2MMk8HeYpBRW3QajU2qozTe_n_gFxuaeyw</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Du, Haishun</creator><creator>Ma, Luogang</creator><creator>Li, Guodong</creator><creator>Wang, Sheng</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202001</creationdate><title>Low-rank graph preserving discriminative dictionary learning for image recognition</title><author>Du, Haishun ; Ma, Luogang ; Li, Guodong ; Wang, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-982dae2b775da0a5009335ae34117e2945892c6943c4d0a0d2e0d9c927a1d94d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dictionaries</topic><topic>Dictionary learning</topic><topic>Graph preserving</topic><topic>Graphical representations</topic><topic>Image recognition</topic><topic>Incoherence</topic><topic>Learning</topic><topic>Low-rank</topic><topic>Object recognition</topic><topic>Sparse representation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Haishun</creatorcontrib><creatorcontrib>Ma, Luogang</creatorcontrib><creatorcontrib>Li, Guodong</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Haishun</au><au>Ma, Luogang</au><au>Li, Guodong</au><au>Wang, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-rank graph preserving discriminative dictionary learning for image recognition</atitle><jtitle>Knowledge-based systems</jtitle><date>2020-01</date><risdate>2020</risdate><volume>187</volume><spage>104823</spage><pages>104823-</pages><artnum>104823</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Discriminative dictionary learning plays a key role in sparse representation-based classification. In this paper, we propose a low-rank graph preserving discriminative dictionary learning (LRGPDDL) method for sparse representation-based image recognition. Specifically, we learn a common sub-dictionary as well as several class-specific sub-dictionaries to explicitly capture the common information shared by all the classes and the class-specific information belonging to the corresponding class. We also impose a low-rank constraint on each sub-dictionary to weaken the negative influence from noise contained in training samples. A discriminative graph preserving criterion and a discriminative reconstruction error term are used for exploiting discriminative information, which can improve the discriminative ability of the learned dictionary effectively. In addition, an incoherence term is also introduced into the proposed dictionary learning model to encourage the learned sub-dictionaries to be as independent as possible. Experimental results on several image datasets verify the effectiveness and robustness of LRGPDDL. •A low-rank graph preserving discriminative dictionary learning method is proposed.•A low-rank constraint and an incoherence term are introduced in the DL model.•A discriminative graph preserving criterion is incorporated into the DL model.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2019.06.031</doi></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2020-01, Vol.187, p.104823, Article 104823
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2330585232
source Elsevier ScienceDirect Journals
subjects Dictionaries
Dictionary learning
Graph preserving
Graphical representations
Image recognition
Incoherence
Learning
Low-rank
Object recognition
Sparse representation
title Low-rank graph preserving discriminative dictionary learning for image recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-rank%20graph%20preserving%20discriminative%20dictionary%20learning%20for%20image%20recognition&rft.jtitle=Knowledge-based%20systems&rft.au=Du,%20Haishun&rft.date=2020-01&rft.volume=187&rft.spage=104823&rft.pages=104823-&rft.artnum=104823&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2019.06.031&rft_dat=%3Cproquest_cross%3E2330585232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330585232&rft_id=info:pmid/&rft_els_id=S0950705119302989&rfr_iscdi=true