Higher Order Dirichlet-Type Problems in 2D Complex Quaternionic Analysis

It is well known that developing methods for solving Dirichlet problems is important and relevant for various areas of mathematical physics related to the Laplace equation, the Helmholtz equation, the Stokes equation, the Maxwell equation, the Dirac equation, and others. The author in previous paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vestnik, St. Petersburg University. Mathematics St. Petersburg University. Mathematics, 2019-10, Vol.52 (4), p.409-418
1. Verfasser: Schneider, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 418
container_issue 4
container_start_page 409
container_title Vestnik, St. Petersburg University. Mathematics
container_volume 52
creator Schneider, B.
description It is well known that developing methods for solving Dirichlet problems is important and relevant for various areas of mathematical physics related to the Laplace equation, the Helmholtz equation, the Stokes equation, the Maxwell equation, the Dirac equation, and others. The author in previous papers studied the solvability of Dirichlet boundary value problems of the first and second orders in quaternionic analysis. In the present paper, we study a higher-order Dirichlet boundary value problem associated with the two-dimensional Helmholtz equation with complex potential. The existence and uniqueness of a solution to the Dirichlet boundary value problem in the two-dimensional case is proved and an appropriate representation formula for the solution of this problem is found. Most Dirichlet problems are solved for the case in three variables. Note that the case of two variables is not a simple consequence of the three-dimensional case. To solve the problem, we use the method of orthogonal decomposition of the quaternion-valued Sobolev space. This orthogonal decomposition of the space is also a tool for the study of many elliptic boundary value problems that arise in various areas of mathematics and mathematical physics. An orthogonal decomposition of the quaternion-valued Sobolev space with respect to the high-order Dirac operator is also obtained in this paper.
doi_str_mv 10.1134/S1063454119040083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330071866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330071866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-94e33b2449a0df21105741d183cf93ca50fed05c4ec51ad83074923b093b7c363</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLcFz9GZnd0keyytWqFQxXoOyWbTbkmTuJuC_femVPAgXmYG3vcew2PsFuEekeTDO0JMUklEDRIgpTM2Qk0ySlKlzod7kKOjfsmuQtgCqFgoGrH53K031vOlL4c5c96ZTW37aHXoLH_1bVHbXeCu4WLGp-2uq-0Xf9vnvfWNaxtn-KTJ60Nw4ZpdVHkd7M3PHrOPp8fVdB4tls8v08kiMiJO-0hLS1QIKXUOZSUQQSUSS0zJVJpMrqCyJSgjrVGYlylBIrWgAjQViaGYxuzulNv59nNvQ59t270fngiZIAJIMI2PFJ4o49sQvK2yzrtd7g8ZQnYsLPtT2OARJ08Y2GZt_W_y_6ZvOZ5qqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330071866</pqid></control><display><type>article</type><title>Higher Order Dirichlet-Type Problems in 2D Complex Quaternionic Analysis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Schneider, B.</creator><creatorcontrib>Schneider, B.</creatorcontrib><description>It is well known that developing methods for solving Dirichlet problems is important and relevant for various areas of mathematical physics related to the Laplace equation, the Helmholtz equation, the Stokes equation, the Maxwell equation, the Dirac equation, and others. The author in previous papers studied the solvability of Dirichlet boundary value problems of the first and second orders in quaternionic analysis. In the present paper, we study a higher-order Dirichlet boundary value problem associated with the two-dimensional Helmholtz equation with complex potential. The existence and uniqueness of a solution to the Dirichlet boundary value problem in the two-dimensional case is proved and an appropriate representation formula for the solution of this problem is found. Most Dirichlet problems are solved for the case in three variables. Note that the case of two variables is not a simple consequence of the three-dimensional case. To solve the problem, we use the method of orthogonal decomposition of the quaternion-valued Sobolev space. This orthogonal decomposition of the space is also a tool for the study of many elliptic boundary value problems that arise in various areas of mathematics and mathematical physics. An orthogonal decomposition of the quaternion-valued Sobolev space with respect to the high-order Dirac operator is also obtained in this paper.</description><identifier>ISSN: 1063-4541</identifier><identifier>EISSN: 1934-7855</identifier><identifier>DOI: 10.1134/S1063454119040083</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Boundary value problems ; Decomposition ; Dirac equation ; Dirichlet problem ; Helmholtz equations ; Laplace equation ; Markov analysis ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Maxwell's equations ; Quaternions ; Sobolev space ; Two dimensional analysis</subject><ispartof>Vestnik, St. Petersburg University. Mathematics, 2019-10, Vol.52 (4), p.409-418</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-94e33b2449a0df21105741d183cf93ca50fed05c4ec51ad83074923b093b7c363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063454119040083$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063454119040083$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Schneider, B.</creatorcontrib><title>Higher Order Dirichlet-Type Problems in 2D Complex Quaternionic Analysis</title><title>Vestnik, St. Petersburg University. Mathematics</title><addtitle>Vestnik St.Petersb. Univ.Math</addtitle><description>It is well known that developing methods for solving Dirichlet problems is important and relevant for various areas of mathematical physics related to the Laplace equation, the Helmholtz equation, the Stokes equation, the Maxwell equation, the Dirac equation, and others. The author in previous papers studied the solvability of Dirichlet boundary value problems of the first and second orders in quaternionic analysis. In the present paper, we study a higher-order Dirichlet boundary value problem associated with the two-dimensional Helmholtz equation with complex potential. The existence and uniqueness of a solution to the Dirichlet boundary value problem in the two-dimensional case is proved and an appropriate representation formula for the solution of this problem is found. Most Dirichlet problems are solved for the case in three variables. Note that the case of two variables is not a simple consequence of the three-dimensional case. To solve the problem, we use the method of orthogonal decomposition of the quaternion-valued Sobolev space. This orthogonal decomposition of the space is also a tool for the study of many elliptic boundary value problems that arise in various areas of mathematics and mathematical physics. An orthogonal decomposition of the quaternion-valued Sobolev space with respect to the high-order Dirac operator is also obtained in this paper.</description><subject>Analysis</subject><subject>Boundary value problems</subject><subject>Decomposition</subject><subject>Dirac equation</subject><subject>Dirichlet problem</subject><subject>Helmholtz equations</subject><subject>Laplace equation</subject><subject>Markov analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maxwell's equations</subject><subject>Quaternions</subject><subject>Sobolev space</subject><subject>Two dimensional analysis</subject><issn>1063-4541</issn><issn>1934-7855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFZ_gLcFz9GZnd0keyytWqFQxXoOyWbTbkmTuJuC_femVPAgXmYG3vcew2PsFuEekeTDO0JMUklEDRIgpTM2Qk0ySlKlzod7kKOjfsmuQtgCqFgoGrH53K031vOlL4c5c96ZTW37aHXoLH_1bVHbXeCu4WLGp-2uq-0Xf9vnvfWNaxtn-KTJ60Nw4ZpdVHkd7M3PHrOPp8fVdB4tls8v08kiMiJO-0hLS1QIKXUOZSUQQSUSS0zJVJpMrqCyJSgjrVGYlylBIrWgAjQViaGYxuzulNv59nNvQ59t270fngiZIAJIMI2PFJ4o49sQvK2yzrtd7g8ZQnYsLPtT2OARJ08Y2GZt_W_y_6ZvOZ5qqA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Schneider, B.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>Higher Order Dirichlet-Type Problems in 2D Complex Quaternionic Analysis</title><author>Schneider, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-94e33b2449a0df21105741d183cf93ca50fed05c4ec51ad83074923b093b7c363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Boundary value problems</topic><topic>Decomposition</topic><topic>Dirac equation</topic><topic>Dirichlet problem</topic><topic>Helmholtz equations</topic><topic>Laplace equation</topic><topic>Markov analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maxwell's equations</topic><topic>Quaternions</topic><topic>Sobolev space</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, B.</creatorcontrib><collection>CrossRef</collection><jtitle>Vestnik, St. Petersburg University. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher Order Dirichlet-Type Problems in 2D Complex Quaternionic Analysis</atitle><jtitle>Vestnik, St. Petersburg University. Mathematics</jtitle><stitle>Vestnik St.Petersb. Univ.Math</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>52</volume><issue>4</issue><spage>409</spage><epage>418</epage><pages>409-418</pages><issn>1063-4541</issn><eissn>1934-7855</eissn><abstract>It is well known that developing methods for solving Dirichlet problems is important and relevant for various areas of mathematical physics related to the Laplace equation, the Helmholtz equation, the Stokes equation, the Maxwell equation, the Dirac equation, and others. The author in previous papers studied the solvability of Dirichlet boundary value problems of the first and second orders in quaternionic analysis. In the present paper, we study a higher-order Dirichlet boundary value problem associated with the two-dimensional Helmholtz equation with complex potential. The existence and uniqueness of a solution to the Dirichlet boundary value problem in the two-dimensional case is proved and an appropriate representation formula for the solution of this problem is found. Most Dirichlet problems are solved for the case in three variables. Note that the case of two variables is not a simple consequence of the three-dimensional case. To solve the problem, we use the method of orthogonal decomposition of the quaternion-valued Sobolev space. This orthogonal decomposition of the space is also a tool for the study of many elliptic boundary value problems that arise in various areas of mathematics and mathematical physics. An orthogonal decomposition of the quaternion-valued Sobolev space with respect to the high-order Dirac operator is also obtained in this paper.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063454119040083</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-4541
ispartof Vestnik, St. Petersburg University. Mathematics, 2019-10, Vol.52 (4), p.409-418
issn 1063-4541
1934-7855
language eng
recordid cdi_proquest_journals_2330071866
source SpringerLink Journals - AutoHoldings
subjects Analysis
Boundary value problems
Decomposition
Dirac equation
Dirichlet problem
Helmholtz equations
Laplace equation
Markov analysis
Mathematical analysis
Mathematics
Mathematics and Statistics
Maxwell's equations
Quaternions
Sobolev space
Two dimensional analysis
title Higher Order Dirichlet-Type Problems in 2D Complex Quaternionic Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20Order%20Dirichlet-Type%20Problems%20in%202D%20Complex%20Quaternionic%20Analysis&rft.jtitle=Vestnik,%20St.%20Petersburg%20University.%20Mathematics&rft.au=Schneider,%20B.&rft.date=2019-10-01&rft.volume=52&rft.issue=4&rft.spage=409&rft.epage=418&rft.pages=409-418&rft.issn=1063-4541&rft.eissn=1934-7855&rft_id=info:doi/10.1134/S1063454119040083&rft_dat=%3Cproquest_cross%3E2330071866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330071866&rft_id=info:pmid/&rfr_iscdi=true