Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour
This paper proposes a new metaheuristic global optimization algorithm inspired by Wildebeest herding behavior called Wildebeest Herd Optimization (WHO) algorithm. WHO algorithm mimics the way nomadic Wildebeest herds search vast areas of grasslands efficiently for regions of high food density. The W...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2019-01, Vol.37 (6), p.8063-8076 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8076 |
---|---|
container_issue | 6 |
container_start_page | 8063 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 37 |
creator | Amali, D. Geraldine Bessie Dinakaran, M. |
description | This paper proposes a new metaheuristic global optimization algorithm inspired by Wildebeest herding behavior called Wildebeest Herd Optimization (WHO) algorithm. WHO algorithm mimics the way nomadic Wildebeest herds search vast areas of grasslands efficiently for regions of high food density. The WHO algorithm models five principal Wildebeest behaviors: firstly Wildebeests have limited eyesight and can only search for food locally, secondly Wildebeests stick to the herd to escape predators, thirdly Wildebeest herd as a whole migrates to regions of high food availability based on historical knowledge of annual grass growth rates and rainfall patterns, fourthly Wildebeests move out of crowded overgrazed regions and finally Wildebeests move to avoid starvation. The WHO algorithm is compared to Physics inspired, Swarm based, Biologically inspired and Evolution inspired global optimization algorithms on an extended test suite of benchmark optimization problems including rotated, shifted, noisy and high dimensional problems. Extensive simulation results indicate that the WHO algorithm proposed in this paper significantly outperforms state-of-the-art popular metaheuristic optimization algorithms like Particle Swarm Optimization Algorithm (PSO), Genetic Algorithm (GA), Gravitational Search Algorithm (GSA), Artificial Bee Colony Algorithm (ABC) and Simulated Annealing (SA) on shifted, high dimensional and large search range problems. |
doi_str_mv | 10.3233/JIFS-190495 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330065361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330065361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-6354349455322f0b0c171f279bde07b1c0baa56f3dff5489bb85d3818a2071793</originalsourceid><addsrcrecordid>eNpVkE1LAzEYhIMoWKsn_0DAo6zmOxtvpVitFDyoeAzJbtKmbDdrslrqr3dLvfQ0L8ww8_IAcI3RHSWU3r_MZ28FVogpfgJGuJS8KJWQp8ONBCswYeIcXOS8RghLTtAIrD9DUzvrXO7hyqUaxq4Pm_Br-hDbBziBrdvCZROtaY4saJplTKFfbWBocxeSq6Hdwe1xW2iX0LqV-QnxO12CM2-a7K7-dQw-Zo_v0-di8fo0n04WRUUE7gtBOaNMMc4pIR5ZVGGJPZHK1g5JiytkjeHC09p7zkplbclrWuLSECSxVHQMbg69XYpf38Mrej2st8OkHhghJDgVeEjdHlJVijkn53WXwsakncZI72HqPUx9gEn_ANBpaAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330065361</pqid></control><display><type>article</type><title>Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour</title><source>Business Source Complete</source><creator>Amali, D. Geraldine Bessie ; Dinakaran, M.</creator><creatorcontrib>Amali, D. Geraldine Bessie ; Dinakaran, M.</creatorcontrib><description>This paper proposes a new metaheuristic global optimization algorithm inspired by Wildebeest herding behavior called Wildebeest Herd Optimization (WHO) algorithm. WHO algorithm mimics the way nomadic Wildebeest herds search vast areas of grasslands efficiently for regions of high food density. The WHO algorithm models five principal Wildebeest behaviors: firstly Wildebeests have limited eyesight and can only search for food locally, secondly Wildebeests stick to the herd to escape predators, thirdly Wildebeest herd as a whole migrates to regions of high food availability based on historical knowledge of annual grass growth rates and rainfall patterns, fourthly Wildebeests move out of crowded overgrazed regions and finally Wildebeests move to avoid starvation. The WHO algorithm is compared to Physics inspired, Swarm based, Biologically inspired and Evolution inspired global optimization algorithms on an extended test suite of benchmark optimization problems including rotated, shifted, noisy and high dimensional problems. Extensive simulation results indicate that the WHO algorithm proposed in this paper significantly outperforms state-of-the-art popular metaheuristic optimization algorithms like Particle Swarm Optimization Algorithm (PSO), Genetic Algorithm (GA), Gravitational Search Algorithm (GSA), Artificial Bee Colony Algorithm (ABC) and Simulated Annealing (SA) on shifted, high dimensional and large search range problems.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-190495</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Annual rainfall ; Computer simulation ; Evolutionary algorithms ; Food ; Genetic algorithms ; Global optimization ; Grasslands ; Heuristic methods ; Nonlinear programming ; Optimization algorithms ; Particle swarm optimization ; Predators ; Rainfall ; Search algorithms ; Simulated annealing</subject><ispartof>Journal of intelligent & fuzzy systems, 2019-01, Vol.37 (6), p.8063-8076</ispartof><rights>Copyright IOS Press BV 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-6354349455322f0b0c171f279bde07b1c0baa56f3dff5489bb85d3818a2071793</citedby><cites>FETCH-LOGICAL-c261t-6354349455322f0b0c171f279bde07b1c0baa56f3dff5489bb85d3818a2071793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Amali, D. Geraldine Bessie</creatorcontrib><creatorcontrib>Dinakaran, M.</creatorcontrib><title>Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour</title><title>Journal of intelligent & fuzzy systems</title><description>This paper proposes a new metaheuristic global optimization algorithm inspired by Wildebeest herding behavior called Wildebeest Herd Optimization (WHO) algorithm. WHO algorithm mimics the way nomadic Wildebeest herds search vast areas of grasslands efficiently for regions of high food density. The WHO algorithm models five principal Wildebeest behaviors: firstly Wildebeests have limited eyesight and can only search for food locally, secondly Wildebeests stick to the herd to escape predators, thirdly Wildebeest herd as a whole migrates to regions of high food availability based on historical knowledge of annual grass growth rates and rainfall patterns, fourthly Wildebeests move out of crowded overgrazed regions and finally Wildebeests move to avoid starvation. The WHO algorithm is compared to Physics inspired, Swarm based, Biologically inspired and Evolution inspired global optimization algorithms on an extended test suite of benchmark optimization problems including rotated, shifted, noisy and high dimensional problems. Extensive simulation results indicate that the WHO algorithm proposed in this paper significantly outperforms state-of-the-art popular metaheuristic optimization algorithms like Particle Swarm Optimization Algorithm (PSO), Genetic Algorithm (GA), Gravitational Search Algorithm (GSA), Artificial Bee Colony Algorithm (ABC) and Simulated Annealing (SA) on shifted, high dimensional and large search range problems.</description><subject>Annual rainfall</subject><subject>Computer simulation</subject><subject>Evolutionary algorithms</subject><subject>Food</subject><subject>Genetic algorithms</subject><subject>Global optimization</subject><subject>Grasslands</subject><subject>Heuristic methods</subject><subject>Nonlinear programming</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Predators</subject><subject>Rainfall</subject><subject>Search algorithms</subject><subject>Simulated annealing</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LAzEYhIMoWKsn_0DAo6zmOxtvpVitFDyoeAzJbtKmbDdrslrqr3dLvfQ0L8ww8_IAcI3RHSWU3r_MZ28FVogpfgJGuJS8KJWQp8ONBCswYeIcXOS8RghLTtAIrD9DUzvrXO7hyqUaxq4Pm_Br-hDbBziBrdvCZROtaY4saJplTKFfbWBocxeSq6Hdwe1xW2iX0LqV-QnxO12CM2-a7K7-dQw-Zo_v0-di8fo0n04WRUUE7gtBOaNMMc4pIR5ZVGGJPZHK1g5JiytkjeHC09p7zkplbclrWuLSECSxVHQMbg69XYpf38Mrej2st8OkHhghJDgVeEjdHlJVijkn53WXwsakncZI72HqPUx9gEn_ANBpaAc</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Amali, D. Geraldine Bessie</creator><creator>Dinakaran, M.</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour</title><author>Amali, D. Geraldine Bessie ; Dinakaran, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-6354349455322f0b0c171f279bde07b1c0baa56f3dff5489bb85d3818a2071793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annual rainfall</topic><topic>Computer simulation</topic><topic>Evolutionary algorithms</topic><topic>Food</topic><topic>Genetic algorithms</topic><topic>Global optimization</topic><topic>Grasslands</topic><topic>Heuristic methods</topic><topic>Nonlinear programming</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Predators</topic><topic>Rainfall</topic><topic>Search algorithms</topic><topic>Simulated annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amali, D. Geraldine Bessie</creatorcontrib><creatorcontrib>Dinakaran, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amali, D. Geraldine Bessie</au><au>Dinakaran, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>37</volume><issue>6</issue><spage>8063</spage><epage>8076</epage><pages>8063-8076</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>This paper proposes a new metaheuristic global optimization algorithm inspired by Wildebeest herding behavior called Wildebeest Herd Optimization (WHO) algorithm. WHO algorithm mimics the way nomadic Wildebeest herds search vast areas of grasslands efficiently for regions of high food density. The WHO algorithm models five principal Wildebeest behaviors: firstly Wildebeests have limited eyesight and can only search for food locally, secondly Wildebeests stick to the herd to escape predators, thirdly Wildebeest herd as a whole migrates to regions of high food availability based on historical knowledge of annual grass growth rates and rainfall patterns, fourthly Wildebeests move out of crowded overgrazed regions and finally Wildebeests move to avoid starvation. The WHO algorithm is compared to Physics inspired, Swarm based, Biologically inspired and Evolution inspired global optimization algorithms on an extended test suite of benchmark optimization problems including rotated, shifted, noisy and high dimensional problems. Extensive simulation results indicate that the WHO algorithm proposed in this paper significantly outperforms state-of-the-art popular metaheuristic optimization algorithms like Particle Swarm Optimization Algorithm (PSO), Genetic Algorithm (GA), Gravitational Search Algorithm (GSA), Artificial Bee Colony Algorithm (ABC) and Simulated Annealing (SA) on shifted, high dimensional and large search range problems.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-190495</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2019-01, Vol.37 (6), p.8063-8076 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2330065361 |
source | Business Source Complete |
subjects | Annual rainfall Computer simulation Evolutionary algorithms Food Genetic algorithms Global optimization Grasslands Heuristic methods Nonlinear programming Optimization algorithms Particle swarm optimization Predators Rainfall Search algorithms Simulated annealing |
title | Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A21%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wildebeest%20herd%20optimization:%20A%20new%20global%20optimization%20algorithm%20inspired%20by%20wildebeest%20herding%20behaviour&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Amali,%20D.%20Geraldine%20Bessie&rft.date=2019-01-01&rft.volume=37&rft.issue=6&rft.spage=8063&rft.epage=8076&rft.pages=8063-8076&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-190495&rft_dat=%3Cproquest_cross%3E2330065361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330065361&rft_id=info:pmid/&rfr_iscdi=true |