Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour

This paper proposes a new metaheuristic global optimization algorithm inspired by Wildebeest herding behavior called Wildebeest Herd Optimization (WHO) algorithm. WHO algorithm mimics the way nomadic Wildebeest herds search vast areas of grasslands efficiently for regions of high food density. The W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2019-01, Vol.37 (6), p.8063-8076
Hauptverfasser: Amali, D. Geraldine Bessie, Dinakaran, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8076
container_issue 6
container_start_page 8063
container_title Journal of intelligent & fuzzy systems
container_volume 37
creator Amali, D. Geraldine Bessie
Dinakaran, M.
description This paper proposes a new metaheuristic global optimization algorithm inspired by Wildebeest herding behavior called Wildebeest Herd Optimization (WHO) algorithm. WHO algorithm mimics the way nomadic Wildebeest herds search vast areas of grasslands efficiently for regions of high food density. The WHO algorithm models five principal Wildebeest behaviors: firstly Wildebeests have limited eyesight and can only search for food locally, secondly Wildebeests stick to the herd to escape predators, thirdly Wildebeest herd as a whole migrates to regions of high food availability based on historical knowledge of annual grass growth rates and rainfall patterns, fourthly Wildebeests move out of crowded overgrazed regions and finally Wildebeests move to avoid starvation. The WHO algorithm is compared to Physics inspired, Swarm based, Biologically inspired and Evolution inspired global optimization algorithms on an extended test suite of benchmark optimization problems including rotated, shifted, noisy and high dimensional problems. Extensive simulation results indicate that the WHO algorithm proposed in this paper significantly outperforms state-of-the-art popular metaheuristic optimization algorithms like Particle Swarm Optimization Algorithm (PSO), Genetic Algorithm (GA), Gravitational Search Algorithm (GSA), Artificial Bee Colony Algorithm (ABC) and Simulated Annealing (SA) on shifted, high dimensional and large search range problems.
doi_str_mv 10.3233/JIFS-190495
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330065361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330065361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-6354349455322f0b0c171f279bde07b1c0baa56f3dff5489bb85d3818a2071793</originalsourceid><addsrcrecordid>eNpVkE1LAzEYhIMoWKsn_0DAo6zmOxtvpVitFDyoeAzJbtKmbDdrslrqr3dLvfQ0L8ww8_IAcI3RHSWU3r_MZ28FVogpfgJGuJS8KJWQp8ONBCswYeIcXOS8RghLTtAIrD9DUzvrXO7hyqUaxq4Pm_Br-hDbBziBrdvCZROtaY4saJplTKFfbWBocxeSq6Hdwe1xW2iX0LqV-QnxO12CM2-a7K7-dQw-Zo_v0-di8fo0n04WRUUE7gtBOaNMMc4pIR5ZVGGJPZHK1g5JiytkjeHC09p7zkplbclrWuLSECSxVHQMbg69XYpf38Mrej2st8OkHhghJDgVeEjdHlJVijkn53WXwsakncZI72HqPUx9gEn_ANBpaAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330065361</pqid></control><display><type>article</type><title>Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour</title><source>Business Source Complete</source><creator>Amali, D. Geraldine Bessie ; Dinakaran, M.</creator><creatorcontrib>Amali, D. Geraldine Bessie ; Dinakaran, M.</creatorcontrib><description>This paper proposes a new metaheuristic global optimization algorithm inspired by Wildebeest herding behavior called Wildebeest Herd Optimization (WHO) algorithm. WHO algorithm mimics the way nomadic Wildebeest herds search vast areas of grasslands efficiently for regions of high food density. The WHO algorithm models five principal Wildebeest behaviors: firstly Wildebeests have limited eyesight and can only search for food locally, secondly Wildebeests stick to the herd to escape predators, thirdly Wildebeest herd as a whole migrates to regions of high food availability based on historical knowledge of annual grass growth rates and rainfall patterns, fourthly Wildebeests move out of crowded overgrazed regions and finally Wildebeests move to avoid starvation. The WHO algorithm is compared to Physics inspired, Swarm based, Biologically inspired and Evolution inspired global optimization algorithms on an extended test suite of benchmark optimization problems including rotated, shifted, noisy and high dimensional problems. Extensive simulation results indicate that the WHO algorithm proposed in this paper significantly outperforms state-of-the-art popular metaheuristic optimization algorithms like Particle Swarm Optimization Algorithm (PSO), Genetic Algorithm (GA), Gravitational Search Algorithm (GSA), Artificial Bee Colony Algorithm (ABC) and Simulated Annealing (SA) on shifted, high dimensional and large search range problems.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-190495</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Annual rainfall ; Computer simulation ; Evolutionary algorithms ; Food ; Genetic algorithms ; Global optimization ; Grasslands ; Heuristic methods ; Nonlinear programming ; Optimization algorithms ; Particle swarm optimization ; Predators ; Rainfall ; Search algorithms ; Simulated annealing</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2019-01, Vol.37 (6), p.8063-8076</ispartof><rights>Copyright IOS Press BV 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-6354349455322f0b0c171f279bde07b1c0baa56f3dff5489bb85d3818a2071793</citedby><cites>FETCH-LOGICAL-c261t-6354349455322f0b0c171f279bde07b1c0baa56f3dff5489bb85d3818a2071793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Amali, D. Geraldine Bessie</creatorcontrib><creatorcontrib>Dinakaran, M.</creatorcontrib><title>Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour</title><title>Journal of intelligent &amp; fuzzy systems</title><description>This paper proposes a new metaheuristic global optimization algorithm inspired by Wildebeest herding behavior called Wildebeest Herd Optimization (WHO) algorithm. WHO algorithm mimics the way nomadic Wildebeest herds search vast areas of grasslands efficiently for regions of high food density. The WHO algorithm models five principal Wildebeest behaviors: firstly Wildebeests have limited eyesight and can only search for food locally, secondly Wildebeests stick to the herd to escape predators, thirdly Wildebeest herd as a whole migrates to regions of high food availability based on historical knowledge of annual grass growth rates and rainfall patterns, fourthly Wildebeests move out of crowded overgrazed regions and finally Wildebeests move to avoid starvation. The WHO algorithm is compared to Physics inspired, Swarm based, Biologically inspired and Evolution inspired global optimization algorithms on an extended test suite of benchmark optimization problems including rotated, shifted, noisy and high dimensional problems. Extensive simulation results indicate that the WHO algorithm proposed in this paper significantly outperforms state-of-the-art popular metaheuristic optimization algorithms like Particle Swarm Optimization Algorithm (PSO), Genetic Algorithm (GA), Gravitational Search Algorithm (GSA), Artificial Bee Colony Algorithm (ABC) and Simulated Annealing (SA) on shifted, high dimensional and large search range problems.</description><subject>Annual rainfall</subject><subject>Computer simulation</subject><subject>Evolutionary algorithms</subject><subject>Food</subject><subject>Genetic algorithms</subject><subject>Global optimization</subject><subject>Grasslands</subject><subject>Heuristic methods</subject><subject>Nonlinear programming</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Predators</subject><subject>Rainfall</subject><subject>Search algorithms</subject><subject>Simulated annealing</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LAzEYhIMoWKsn_0DAo6zmOxtvpVitFDyoeAzJbtKmbDdrslrqr3dLvfQ0L8ww8_IAcI3RHSWU3r_MZ28FVogpfgJGuJS8KJWQp8ONBCswYeIcXOS8RghLTtAIrD9DUzvrXO7hyqUaxq4Pm_Br-hDbBziBrdvCZROtaY4saJplTKFfbWBocxeSq6Hdwe1xW2iX0LqV-QnxO12CM2-a7K7-dQw-Zo_v0-di8fo0n04WRUUE7gtBOaNMMc4pIR5ZVGGJPZHK1g5JiytkjeHC09p7zkplbclrWuLSECSxVHQMbg69XYpf38Mrej2st8OkHhghJDgVeEjdHlJVijkn53WXwsakncZI72HqPUx9gEn_ANBpaAc</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Amali, D. Geraldine Bessie</creator><creator>Dinakaran, M.</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour</title><author>Amali, D. Geraldine Bessie ; Dinakaran, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-6354349455322f0b0c171f279bde07b1c0baa56f3dff5489bb85d3818a2071793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annual rainfall</topic><topic>Computer simulation</topic><topic>Evolutionary algorithms</topic><topic>Food</topic><topic>Genetic algorithms</topic><topic>Global optimization</topic><topic>Grasslands</topic><topic>Heuristic methods</topic><topic>Nonlinear programming</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Predators</topic><topic>Rainfall</topic><topic>Search algorithms</topic><topic>Simulated annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amali, D. Geraldine Bessie</creatorcontrib><creatorcontrib>Dinakaran, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amali, D. Geraldine Bessie</au><au>Dinakaran, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>37</volume><issue>6</issue><spage>8063</spage><epage>8076</epage><pages>8063-8076</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>This paper proposes a new metaheuristic global optimization algorithm inspired by Wildebeest herding behavior called Wildebeest Herd Optimization (WHO) algorithm. WHO algorithm mimics the way nomadic Wildebeest herds search vast areas of grasslands efficiently for regions of high food density. The WHO algorithm models five principal Wildebeest behaviors: firstly Wildebeests have limited eyesight and can only search for food locally, secondly Wildebeests stick to the herd to escape predators, thirdly Wildebeest herd as a whole migrates to regions of high food availability based on historical knowledge of annual grass growth rates and rainfall patterns, fourthly Wildebeests move out of crowded overgrazed regions and finally Wildebeests move to avoid starvation. The WHO algorithm is compared to Physics inspired, Swarm based, Biologically inspired and Evolution inspired global optimization algorithms on an extended test suite of benchmark optimization problems including rotated, shifted, noisy and high dimensional problems. Extensive simulation results indicate that the WHO algorithm proposed in this paper significantly outperforms state-of-the-art popular metaheuristic optimization algorithms like Particle Swarm Optimization Algorithm (PSO), Genetic Algorithm (GA), Gravitational Search Algorithm (GSA), Artificial Bee Colony Algorithm (ABC) and Simulated Annealing (SA) on shifted, high dimensional and large search range problems.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-190495</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2019-01, Vol.37 (6), p.8063-8076
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2330065361
source Business Source Complete
subjects Annual rainfall
Computer simulation
Evolutionary algorithms
Food
Genetic algorithms
Global optimization
Grasslands
Heuristic methods
Nonlinear programming
Optimization algorithms
Particle swarm optimization
Predators
Rainfall
Search algorithms
Simulated annealing
title Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A21%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wildebeest%20herd%20optimization:%20A%20new%20global%20optimization%20algorithm%20inspired%20by%20wildebeest%20herding%20behaviour&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Amali,%20D.%20Geraldine%20Bessie&rft.date=2019-01-01&rft.volume=37&rft.issue=6&rft.spage=8063&rft.epage=8076&rft.pages=8063-8076&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-190495&rft_dat=%3Cproquest_cross%3E2330065361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330065361&rft_id=info:pmid/&rfr_iscdi=true