Experimental and numerical study on the effect of water-decoupling charge structure on the attenuation of blasting stress

The blasting fracturing technique is one of the most promising options for enhancing the permeability of reservoir rock masses in the exploitation of petroleum, coal, uranium and other deep resources. The increase in permeability strongly depends on the shock wave acting on the reservoir rock mass t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2019-12, Vol.124, p.104133, Article 104133
Hauptverfasser: Yuan, Wei, Wang, Wei, Su, Xuebin, Wen, Lei, Chang, Jiangfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104133
container_title International journal of rock mechanics and mining sciences (Oxford, England : 1997)
container_volume 124
creator Yuan, Wei
Wang, Wei
Su, Xuebin
Wen, Lei
Chang, Jiangfang
description The blasting fracturing technique is one of the most promising options for enhancing the permeability of reservoir rock masses in the exploitation of petroleum, coal, uranium and other deep resources. The increase in permeability strongly depends on the shock wave acting on the reservoir rock mass to create a fracture network surrounding the blasthole, which is significantly affected by the decoupling coefficient of the charge. This paper studies the effect of the water-decoupling charge structure on the distribution of blasting stress, as well as the morphology of blasting-inducing fractures. In this work, physical model experiments of water pressure blasting on cement mortar blocks (3.1 m × 3.1 m × 1.0 m) are first conducted to study the attenuation law of explosive stress along the radial direction under the condition of four different water-decoupling coefficients of the charge (i.e., 1.0, 1.79, 2.57 and 3.29). In addition, a square numerical model with one circular blasthole is modeled with a particle assembly based on the discrete element method to simulate the same water pressure blasting tests as those performed in the physical model experiments. The results from the physical model tests and numerical simulations both show that the attenuation amplitude of the peak value of the explosive stress wave along the radial direction first decreases and then increases as the water-decoupling coefficient of the charge increases. In particular, the numerical results also reveal that the distribution range of the fracture network is strongly related to the attenuation of the blasting stress. In comparison with the other three water-decoupling coefficients tested in this paper, 2.57 proves to be the best coefficients for inducing the most extensive fissure distribution from the blasthole. Thus, in water pressure blasting, be an optimal decoupling coefficient for receiving the best blasting effect must exist, and selecting an appropriate water-decoupling coefficient for blasting is beneficial for enhancing reservoir permeability.
doi_str_mv 10.1016/j.ijrmms.2019.104133
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330024350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1365160918307883</els_id><sourcerecordid>2330024350</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-ba326277a512ad836bfefed600444993ff22250a1dc94411beebcd57622cc0ae3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhosoOF7ewEXBdcfcO90IMowXGHCj65AmJzMtbVqTVJ23N0N16-pc-P4T8mXZDUZLjLC4a5dN6_s-LAnCVVoxTOlJtsCrkhaMM36aeip4gQWqzrOLEFqEkCCiXGSHzfcIvunBRdXlypncTX1a6DSFOJlDPrg87iEHa0HHfLD5l4rgCwN6mMaucbtc75XfQcL9pOPk4S-iYgQ3qdikOeXqToV45BMIIVxlZ1Z1Aa5_62X2_rh5Wz8X29enl_XDtlCUl7GoFSWClKXimCizoqK2YMEIhBhjVUWtJYRwpLDRFWMY1wC1NrwUhGiNFNDL7Ha-O_rhY4IQZTtM3qUnJaEUIcIoR4liM6X9EIIHK8dkRfmDxEgeJctWzpLlUbKcJafY_RyD9IPPBrwMugGnwTQ-6ZJmaP4_8ANL8Ynb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330024350</pqid></control><display><type>article</type><title>Experimental and numerical study on the effect of water-decoupling charge structure on the attenuation of blasting stress</title><source>Elsevier ScienceDirect Journals</source><creator>Yuan, Wei ; Wang, Wei ; Su, Xuebin ; Wen, Lei ; Chang, Jiangfang</creator><creatorcontrib>Yuan, Wei ; Wang, Wei ; Su, Xuebin ; Wen, Lei ; Chang, Jiangfang</creatorcontrib><description>The blasting fracturing technique is one of the most promising options for enhancing the permeability of reservoir rock masses in the exploitation of petroleum, coal, uranium and other deep resources. The increase in permeability strongly depends on the shock wave acting on the reservoir rock mass to create a fracture network surrounding the blasthole, which is significantly affected by the decoupling coefficient of the charge. This paper studies the effect of the water-decoupling charge structure on the distribution of blasting stress, as well as the morphology of blasting-inducing fractures. In this work, physical model experiments of water pressure blasting on cement mortar blocks (3.1 m × 3.1 m × 1.0 m) are first conducted to study the attenuation law of explosive stress along the radial direction under the condition of four different water-decoupling coefficients of the charge (i.e., 1.0, 1.79, 2.57 and 3.29). In addition, a square numerical model with one circular blasthole is modeled with a particle assembly based on the discrete element method to simulate the same water pressure blasting tests as those performed in the physical model experiments. The results from the physical model tests and numerical simulations both show that the attenuation amplitude of the peak value of the explosive stress wave along the radial direction first decreases and then increases as the water-decoupling coefficient of the charge increases. In particular, the numerical results also reveal that the distribution range of the fracture network is strongly related to the attenuation of the blasting stress. In comparison with the other three water-decoupling coefficients tested in this paper, 2.57 proves to be the best coefficients for inducing the most extensive fissure distribution from the blasthole. Thus, in water pressure blasting, be an optimal decoupling coefficient for receiving the best blasting effect must exist, and selecting an appropriate water-decoupling coefficient for blasting is beneficial for enhancing reservoir permeability.</description><identifier>ISSN: 1365-1609</identifier><identifier>EISSN: 1873-4545</identifier><identifier>DOI: 10.1016/j.ijrmms.2019.104133</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Blasting ; Blasting (explosive) ; Blasting-enhanced permeability ; Charge distribution ; Coefficients ; Computer simulation ; Decoupling ; Discrete element method ; Distinct element method ; Exploitation ; Fractures ; Mathematical models ; Model testing ; Morphology ; Mortars (material) ; Numerical models ; Permeability ; Physical model test ; Reservoirs ; Rock masses ; Rocks ; Shock waves ; Stress concentration ; Stress waves ; Uranium ; Water pressure ; Water pressure blasting ; Water-decoupling coefficient ; Wave attenuation</subject><ispartof>International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2019-12, Vol.124, p.104133, Article 104133</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-ba326277a512ad836bfefed600444993ff22250a1dc94411beebcd57622cc0ae3</citedby><cites>FETCH-LOGICAL-a357t-ba326277a512ad836bfefed600444993ff22250a1dc94411beebcd57622cc0ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1365160918307883$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yuan, Wei</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Su, Xuebin</creatorcontrib><creatorcontrib>Wen, Lei</creatorcontrib><creatorcontrib>Chang, Jiangfang</creatorcontrib><title>Experimental and numerical study on the effect of water-decoupling charge structure on the attenuation of blasting stress</title><title>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</title><description>The blasting fracturing technique is one of the most promising options for enhancing the permeability of reservoir rock masses in the exploitation of petroleum, coal, uranium and other deep resources. The increase in permeability strongly depends on the shock wave acting on the reservoir rock mass to create a fracture network surrounding the blasthole, which is significantly affected by the decoupling coefficient of the charge. This paper studies the effect of the water-decoupling charge structure on the distribution of blasting stress, as well as the morphology of blasting-inducing fractures. In this work, physical model experiments of water pressure blasting on cement mortar blocks (3.1 m × 3.1 m × 1.0 m) are first conducted to study the attenuation law of explosive stress along the radial direction under the condition of four different water-decoupling coefficients of the charge (i.e., 1.0, 1.79, 2.57 and 3.29). In addition, a square numerical model with one circular blasthole is modeled with a particle assembly based on the discrete element method to simulate the same water pressure blasting tests as those performed in the physical model experiments. The results from the physical model tests and numerical simulations both show that the attenuation amplitude of the peak value of the explosive stress wave along the radial direction first decreases and then increases as the water-decoupling coefficient of the charge increases. In particular, the numerical results also reveal that the distribution range of the fracture network is strongly related to the attenuation of the blasting stress. In comparison with the other three water-decoupling coefficients tested in this paper, 2.57 proves to be the best coefficients for inducing the most extensive fissure distribution from the blasthole. Thus, in water pressure blasting, be an optimal decoupling coefficient for receiving the best blasting effect must exist, and selecting an appropriate water-decoupling coefficient for blasting is beneficial for enhancing reservoir permeability.</description><subject>Blasting</subject><subject>Blasting (explosive)</subject><subject>Blasting-enhanced permeability</subject><subject>Charge distribution</subject><subject>Coefficients</subject><subject>Computer simulation</subject><subject>Decoupling</subject><subject>Discrete element method</subject><subject>Distinct element method</subject><subject>Exploitation</subject><subject>Fractures</subject><subject>Mathematical models</subject><subject>Model testing</subject><subject>Morphology</subject><subject>Mortars (material)</subject><subject>Numerical models</subject><subject>Permeability</subject><subject>Physical model test</subject><subject>Reservoirs</subject><subject>Rock masses</subject><subject>Rocks</subject><subject>Shock waves</subject><subject>Stress concentration</subject><subject>Stress waves</subject><subject>Uranium</subject><subject>Water pressure</subject><subject>Water pressure blasting</subject><subject>Water-decoupling coefficient</subject><subject>Wave attenuation</subject><issn>1365-1609</issn><issn>1873-4545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhosoOF7ewEXBdcfcO90IMowXGHCj65AmJzMtbVqTVJ23N0N16-pc-P4T8mXZDUZLjLC4a5dN6_s-LAnCVVoxTOlJtsCrkhaMM36aeip4gQWqzrOLEFqEkCCiXGSHzfcIvunBRdXlypncTX1a6DSFOJlDPrg87iEHa0HHfLD5l4rgCwN6mMaucbtc75XfQcL9pOPk4S-iYgQ3qdikOeXqToV45BMIIVxlZ1Z1Aa5_62X2_rh5Wz8X29enl_XDtlCUl7GoFSWClKXimCizoqK2YMEIhBhjVUWtJYRwpLDRFWMY1wC1NrwUhGiNFNDL7Ha-O_rhY4IQZTtM3qUnJaEUIcIoR4liM6X9EIIHK8dkRfmDxEgeJctWzpLlUbKcJafY_RyD9IPPBrwMugGnwTQ-6ZJmaP4_8ANL8Ynb</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Yuan, Wei</creator><creator>Wang, Wei</creator><creator>Su, Xuebin</creator><creator>Wen, Lei</creator><creator>Chang, Jiangfang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201912</creationdate><title>Experimental and numerical study on the effect of water-decoupling charge structure on the attenuation of blasting stress</title><author>Yuan, Wei ; Wang, Wei ; Su, Xuebin ; Wen, Lei ; Chang, Jiangfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-ba326277a512ad836bfefed600444993ff22250a1dc94411beebcd57622cc0ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Blasting</topic><topic>Blasting (explosive)</topic><topic>Blasting-enhanced permeability</topic><topic>Charge distribution</topic><topic>Coefficients</topic><topic>Computer simulation</topic><topic>Decoupling</topic><topic>Discrete element method</topic><topic>Distinct element method</topic><topic>Exploitation</topic><topic>Fractures</topic><topic>Mathematical models</topic><topic>Model testing</topic><topic>Morphology</topic><topic>Mortars (material)</topic><topic>Numerical models</topic><topic>Permeability</topic><topic>Physical model test</topic><topic>Reservoirs</topic><topic>Rock masses</topic><topic>Rocks</topic><topic>Shock waves</topic><topic>Stress concentration</topic><topic>Stress waves</topic><topic>Uranium</topic><topic>Water pressure</topic><topic>Water pressure blasting</topic><topic>Water-decoupling coefficient</topic><topic>Wave attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Wei</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Su, Xuebin</creatorcontrib><creatorcontrib>Wen, Lei</creatorcontrib><creatorcontrib>Chang, Jiangfang</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Wei</au><au>Wang, Wei</au><au>Su, Xuebin</au><au>Wen, Lei</au><au>Chang, Jiangfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical study on the effect of water-decoupling charge structure on the attenuation of blasting stress</atitle><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle><date>2019-12</date><risdate>2019</risdate><volume>124</volume><spage>104133</spage><pages>104133-</pages><artnum>104133</artnum><issn>1365-1609</issn><eissn>1873-4545</eissn><abstract>The blasting fracturing technique is one of the most promising options for enhancing the permeability of reservoir rock masses in the exploitation of petroleum, coal, uranium and other deep resources. The increase in permeability strongly depends on the shock wave acting on the reservoir rock mass to create a fracture network surrounding the blasthole, which is significantly affected by the decoupling coefficient of the charge. This paper studies the effect of the water-decoupling charge structure on the distribution of blasting stress, as well as the morphology of blasting-inducing fractures. In this work, physical model experiments of water pressure blasting on cement mortar blocks (3.1 m × 3.1 m × 1.0 m) are first conducted to study the attenuation law of explosive stress along the radial direction under the condition of four different water-decoupling coefficients of the charge (i.e., 1.0, 1.79, 2.57 and 3.29). In addition, a square numerical model with one circular blasthole is modeled with a particle assembly based on the discrete element method to simulate the same water pressure blasting tests as those performed in the physical model experiments. The results from the physical model tests and numerical simulations both show that the attenuation amplitude of the peak value of the explosive stress wave along the radial direction first decreases and then increases as the water-decoupling coefficient of the charge increases. In particular, the numerical results also reveal that the distribution range of the fracture network is strongly related to the attenuation of the blasting stress. In comparison with the other three water-decoupling coefficients tested in this paper, 2.57 proves to be the best coefficients for inducing the most extensive fissure distribution from the blasthole. Thus, in water pressure blasting, be an optimal decoupling coefficient for receiving the best blasting effect must exist, and selecting an appropriate water-decoupling coefficient for blasting is beneficial for enhancing reservoir permeability.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmms.2019.104133</doi></addata></record>
fulltext fulltext
identifier ISSN: 1365-1609
ispartof International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2019-12, Vol.124, p.104133, Article 104133
issn 1365-1609
1873-4545
language eng
recordid cdi_proquest_journals_2330024350
source Elsevier ScienceDirect Journals
subjects Blasting
Blasting (explosive)
Blasting-enhanced permeability
Charge distribution
Coefficients
Computer simulation
Decoupling
Discrete element method
Distinct element method
Exploitation
Fractures
Mathematical models
Model testing
Morphology
Mortars (material)
Numerical models
Permeability
Physical model test
Reservoirs
Rock masses
Rocks
Shock waves
Stress concentration
Stress waves
Uranium
Water pressure
Water pressure blasting
Water-decoupling coefficient
Wave attenuation
title Experimental and numerical study on the effect of water-decoupling charge structure on the attenuation of blasting stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20study%20on%20the%20effect%20of%20water-decoupling%20charge%20structure%20on%20the%20attenuation%20of%20blasting%20stress&rft.jtitle=International%20journal%20of%20rock%20mechanics%20and%20mining%20sciences%20(Oxford,%20England%20:%201997)&rft.au=Yuan,%20Wei&rft.date=2019-12&rft.volume=124&rft.spage=104133&rft.pages=104133-&rft.artnum=104133&rft.issn=1365-1609&rft.eissn=1873-4545&rft_id=info:doi/10.1016/j.ijrmms.2019.104133&rft_dat=%3Cproquest_cross%3E2330024350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330024350&rft_id=info:pmid/&rft_els_id=S1365160918307883&rfr_iscdi=true